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SUMMARY

Infection with parasitic helminths takes a heavy toll on the health and well-being of humans and their domestic livestock,

concomitantly resulting in major economic losses. Analyses have consistently revealed bioactive molecules in extracts of

helminths or in their excretory/secretory products that modulate the immune response of the host. It is our view that

parasitic helminths are an untapped source of immunomodulatory substances that, in pure form, could become new drugs

(or models for drug design) to treat disease. Here, we illustrate the range of immunomodulatory molecules in selected

parasitic trematodes, cestodes and nematodes, their impact on the immune cells in the host and how the host may

recognize these molecules. There are many examples of the partial characterization of helminth-derived immuno-

modulatory molecules, but these have not yet translated into new drugs, reflecting the difficulty of isolating and fully

characterizing proteins, glycoproteins and lipid-based molecules from small amounts of parasite material. However, this

should not deter the investigator, since analytical techniques are now being used to accrue considerable structural infor-

mation on parasite-derived molecules, even when only minute quantities of tissue are available. With the introduction of

methodologies to purify and structurally-characterize molecules from small amounts of tissue and the application of high

throughput immunological assays, one would predict that an assessment of parasitic helminths will yield a variety of novel

drug candidates in the coming years.
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INTRODUCTION

Infections with parasitic helminths continue to cause

considerable morbidity and mortality in humans and

their domestic livestock, translating into substantial

socioeconomic losses. For instance, morbidity as-

sociated with Schistosoma mansoni or Echinococcus

granulosus infections is debilitating and sometimes

fatal (Carod-Artal, 2008; King and Dangerfield-

Cha, 2008), and infections with hookworms retards

the growth of children and can impair their cognitive

functions (Oberhelman et al. 1998). The magnitude

of the problems is illustrated by estimates from

the the World Health Organization (WHO, 1999)

that, even in the midst of successful anthelmintic

programs, 30% of the world’s population harbours

at least 1 species of helminth parasite ; a staggering

2 billion people are affected! However, numerous

studies have shown that modulation of the immune

response of the host by parasitic helminths can have

a concomitant health benefit (reviewed by McKay,

2006). In addition to infections with live organisms,

helminth-derived molecules are potent immuno-

modulators and can serve as templates for the design

of novel anti-inflammatory drugs, and may also be

candidates for vaccine development (Harnett and

Harnett, 2008; Perrigoue et al. 2008). The former

aspect of the host-parasite interaction is the topic of

this review.

HELMINTH THERAPY: THE GOOD, THE BAD AND

THE WRIGGLY

Parasitic helminths have been humans’ long-time

companion and have evolved as ‘master regulators’

of host immune responses (Maizels et al. 2004).

Consequently, knowledge of how the parasite

modifies host immunity can be used to develop ther-

apies for other diseases. In considering ‘helminth

therapy’, one can either use viable infections or

immunomodulatory molecules from the parasite ;

both strategies have been used to treat diseases in

animal models. Infection with a variety of species of
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parasitic helminths has been shown to reduce the

severity of airway, cerebral and intestinal inflam-

mation in murine models of human disease (McKay,

2006), and a number of investigators are pursuing

the mechanism(s) underlying this health benefit

(Weinstock et al. 2005). Moreover, Weinstock and

colleagues have shown that the ingestion of viable

eggs of Trichuris suis by patients with inflammatory

bowel disease (Crohn’s disease and ulcerative colitis)

led to a reduction in disease activity, and adverse

side-effects were not apparent (Summers et al. 2003,

2005). However, there can be a number of concerns

regarding the use of an infection as a therapy. First, a

parasite that has limited impact on the host must be

used, which prohibits the use of particular species,

such as S. mansoni, despite its potent stimulation of

host immunity. Second, there are patient groups

for which this approach would not be advocated,

typically children, the elderly, immunocompromised

individuals and pregnant women (Farah et al. 2007).

Third, there are examples of helminth infections

worsening disease evoked by bacteria or protozoa

(Chen et al. 2005; Marshall et al. 1999) and, in at

least one case, chemically-induced colitis (Hunter

et al. 2007). Finally, when introducing a species

to a novel environment, there is the potential for

maladaptive responses and unpredicted pathological

effects/changes in remote tissues. Moreover, the

possibility exists for parasite establishment in, rather

than expulsion from the host (Kradin et al. 2006).

Despite these issues, the data on ‘helminth therapy’

are encouraging, and animal models can be used

to identify novel anti-inflammatory mechanisms for

translation intomedical treatments,negating theneed

for actual infection.

The use of helminth-derived molecules as drugs

overcomes the concerns with the use of live para-

sites. However, the issues here are often technical

and revolve around a single basic question: how can

pure molecules be isolated from miniscule amounts

of parasite material to allow testing in biological

systems and to serve as blueprints for drug devel-

opment?

IMMUNE RESPONSES TO HELMINTH PARASITES:

THE BASICS

A number of authorative reviews of the mammalian

immune system and the responses to infection with

helminths are available (Hayes et al. 2004; Maizels

et al. 2004;Antony et al. 2007;Khan, 2008;Perrigoue

et al. 2008). As metazoans, helminths cannot be in-

gested by macrophages and other phagocytes, so that

a variety of effector mechanisms have evolved to

combat helminths. These involve the mobilization

and activation of T and B lymphocytes, mast cells,

eosinophils, natural killer (NK) cells, and, if the

infection is at a mucosal surface, mucus-producing

goblet cells. Briefly, while there is likely to be an

innate immune response to helminth-derived pro-

ducts by macrophages and natural killer cells, the

current view is that the predominant anti-worm re-

sponse is the remit of an adaptive immune response.

Thus, following antigen processing and presentation

by professional antigen presenting cells (e.g., den-

dritic cells (DCWs)), humans and mice display a

stereotypic T cell response which is characterized by

the development of CD4+ T helper (TH)-2 cells

that produce interleukin (IL)-4, -5, -13 and others.

These chemical signals mobilize other cells ; for

example, they direct isotype switching, so that high

affinity immunoglobulin (Ig) G, E and A can be

produced. These antibodies then bind to receptors

on effector cells, allowing for their activation by

worm antigen and the release of molecules (e.g.,

mast-derived histamine and trypases, eosinophil-

derived cationic protein) that either disrupt the

surface of the helminth and/or alter the environ-

ment, making it less hospitable to the helminth.

In addition, IgG can bind directly to the surface of

the helminth (opsonization), interfering with worm

behaviour and targeting the worm for attack by

complement and polymorphonuclear cells. Thus,

the host response to infection with parasitic hel-

minths is multi-cellular and is orchestrated by Th2

cells/cytokines. Recent studies are elucidating a role

for additional cytokines such as IL-21 and IL-33

(Humphreys et al. 2008) and regulator cells, in-

cluding the CD4+/Foxp3+ natural regulatory T

cells and, alternatively activatedmacrophages (AAM)

(Baumgart et al. 2006; Taylor et al. 2006; Persaud

et al. 2007). While all immune cells can be con-

sidered as immunomodulatory (i.e., they affect other

immune and stromal cells in their vicinity), regulat-

ory T cells and AAMs (of which there are multiple

types for each; Belkaid and Oldenhove, 2008; Reyes

and Terrazas, 2007) have emerged as prototypic

immunomodulators whose primary function is to

switch-off or dampen immune reactions, or engage

reactions that promote tissue recovery and resti-

tution. Much research remains to be done to pre-

cisely define the biology of regulatory T cells and

AAMs; however, the mobilization of both classes of

cells following an infection with helminths would

generate an immunoregulatory/immunosuppressive

environment in which a spectrum of immune events

would be inhibited. Thus, by extrapolation, the

ability of products from the helminth to elicit regu-

latory T cell or AAM activity could contribute to

worm infectivity and survival.

HELMINTH-DERIVED IMMUNOMODULATORS

An analysis of the biology of a parasite should

include studying the mechanisms of the interaction

of the parasite with the host immune system, so

that potential parasite-derived immunomodulators

(used to develop drugs to treat immuno-pathological
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changes/disease) can be identified. During the last

40 years, a staggering number of helminth-derived

immunomodulators have been partially character-

ized, both in terms of structure and bioactivity (we

define an ‘immunomodulator’ as any molecule that

regulates host immunity, but not antigens recog-

nized by the host that are used to generate immune

responses aimed at the destruction or elimination

of the parasite from the host). Here, we focus on

selected examples from the 3 main groups of para-

sitic helminths and draw the reader’s attention to the

fact that a literature search will reveal many other

examples, all worthy of discussion, and excluded

only on the basis of space restrictions (the examples

given below are supplemented by additional material

in Tables 1–3).

Trematodes

Schistosoma spp. Schistosomes, because of their

impact on human health (King and Dangerfield-

Cha, 2008), have been the focus of intense research

efforts, and a variety of glycoconjugates have been

extracted from the eggs and adult tegument (Bennett,

1963). Soluble egg antigen (SEA) from S. mansoni

has been implicated in the host-response to infec-

tion, and has been shown consistently to have

immunomodulatory properties. For example, SEA

appears to be responsible for the reduction in CD4+

lymphocytes 6 weeks following infection, an event

that was attributed to enhanced Fas-FasL-induced

apoptosis involving CD19+ B cells (Lundy et al.

2001). Excretory/secretory (ES) products from

schistosomula contain a 23 kDa molecule that results

in T cell depletion in vivo via Fas-FasL killing.

Exposure to SEA results in reduced levels of

nitric oxide (NO) and T helper cell-type 1 (TH1)

chemokines (CCL3) and cytokines (tumour necrosis

factor-a (TNFa), IL-12) and an increased ex-

pression of markers indicative of AAMs. These

events are all compatible with the mobilization of

TH2-type cytokines (e.g. IL-4, IL-13) which is

stereotypic of the mammalian immune response to

infection by helminth parasites. The induction of

AAMs is of particular note, as these cells exert

anti-inflammatory effects and are active in tissue

restitution after injury (Gordon and Taylor, 2005).

Thus, the ability to use a consitutent of SEA to

induce this cellular response pharmacologically could

be of direct health benefit.

Mice treated with SEA display endothelial cell

proliferation and capillary formation which appear

to be driven by a heat- and protease-insensitive

molecule, indicative of a glycan (Kanse et al. 2005).

These findings complement the work of van de

Vijver et al. (2006) that detected LDN (GalNAcb1,
4GlcNAc) and LN (Galb1,4GlcNAc) modified

glycans in SEA-stimulated granulomata. SEA has

been shown to induce vascular endothelial growth

factor (VEGF) secretion (Loeffler et al. 2002) and

fibroblast-stimulating factor (FSF-1) (Greenwel

et al. 1993), which could contribute to the formation

of the fibrous capsule around the granulomata,

although it is unclear whether the stimulation of

the production of either growth factor was due to a

glycan component of the SEA. Nevertheless, one

could speculate that SEA evoked growth factor

release fromhost cells to stimulate angiogenesis could

be used to enhance the recovery from tissue damage,

although the potential to elicit metastatic events

should not be overlooked.

In addition, while the exposure to SEA decreased

the expression of Toll-like receptors (TLR) on

macrophages, the responses of these cells to TLR

agonists (e.g., lipopolysaccharide (LPS)) were not

appreciably retarded (Joshi et al. 2008). These

studies are intriguing, as they demonstrate a cross-

talk between infection with parasitic helminths and

responsiveness to bacteria and may illuminate a way

in which one could exploit one type of infection to

treat another. In addition, the complexity of the host

response to infection, which is linked temporally or

spatially and/or parasite-specific, is aptly illustrated

by these studies.

The identification of a>100 kDa heat-insensitive,

carbohydrate-positive fraction from S. mansoni (see

Hayunga et al. 1979) was followed by studies charac-

terizing the glycoproteins of schistosomes and no-

tably led to the elucidation of lacto-N-fucopentose

(LNFPIII) (carbohydrate containing the mam-

malian LewisX trisaccharide [Galb1,4[Fuca1,3]
GlcNAc]) and lacto-N-neotetrose (LNT) (Ko et al.

1990). Analysis of LNT revealed that its injection

into mice caused an expansion of a Gr1+ cell

population which suppressed CD4+ T cell pro-

liferation and cytokine production via an apoptosis-

independent but cell contact-dependent mechanism

(Terrazas et al. 2001). The authors postulated that

this treatment ‘ imprinted’ the Gr1+ cells with a

TH2-type phenotype.

Since the LewisX antigen is present in the lym-

phocyte function-associated molecule-1 (LFA-1),

the role of LNFPIII in lymphocyte proliferation

was assessed and shown to stimulate IL-10 and

prostaglandin E2 (PGE2) production from B-cells

of infected mice without hampering antigen pres-

entation (Velupillai and Harn, 1994). Also, the co-

culture of LNFPIII-treated macrophages and NK

cells enhanced NK cell activation as gauged by

the expression of CD69 and interferon-c (IFNc)
production (Atochina and Harn, 2005). Lacto-N-

fucopentose III also generates anti-inflammatory

responses by signalling through Toll-like receptor

4 (TLR4) to induce the phosphorylation and acti-

vation of the mitogen-activated protein kinase

(MAPK), ERK (Thomas et al. 2003).

The presence of fucose in the LewisX moiety of

LNFPIII is essential for bioactivity (Okano et al.
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Table 1. Selected examples of immunomodulatory molecules from trematodes

Species Worm product Bioactivity Reference

Schistosoma
japonicum

900 kDa ECF-SjE from homogenized eggs; pronase
and heat insensitive glycoprotein; destroyed by
periodate oxidation

In vitro eosinophil chemotaxis Owhashi and Ishii (1982)

440 kDa JAE-H and <440 kDa JAE-L glycoproteins
from adult ES products

Eosinophil chemotactic factors; JAE-L also induces
neutrophil chemotaxis

Horii et al. (1984)

Schistosoma
mansoni

Analogues of adrenocorticotrophin (ACTH) and
a-melanotrophin (a-MSH)

ACTH converts to a-MSH by polymorphonuclear
cells via neutral endopeptidase; aMSH inhibits
leukocyte adherence and immunosuppressive

Duvaux-Miret et al. (1992)

Various surface glycans Fucose and Galactose linked to bovine serum albumin
reduced ERK and PKC phosphorylation and
phagocytosis in Lymnaea stagnalis haemocytes

Plows et al. (2005)

25 kDa glutathione S-transferase in ES products Detoxification of peroxides involved in oxidative stress Guillou et al. (2007)

Fasciola hepatica ES products contain metal ion dependent glycosidases
(b-galactosidase, b-N-acetylhexosaminidase and
b-glucosidase)

May degrade host mucins rich in galactose,
N-acetylglucosamine and N-acetylgalactosamine

Irwin et al. (2004)

ES products Prevent superoxide production by PMA-activated
sheep and human neutrophils in vitro (a heat resistant
ES component from the related species, F. gigantica,
does the same)

Jefferies et al. (1997)
El-Ghaysh et al. (1999)

Diplostomum
pseudopathaceum

22–24 kDa lectin with homology to b1,3 glucan binding
protein localizes to the cercarial penetration glands

Agglutinates murine red blood cells and may facilitate
tissue recognition and penetration

Mikes and Horak (2001)

Paragonimus westermani 27 kDa cysteine protease in ES products Induces superoxide production and human eosinophil
degranulation

Chung et al. (2008)

Opisthorchis viverrini 24 kDa thioredoxin peroxidase (TPx) isolated by
genomic probing; also exists in ES products

Protects worm from reactive oxygen metabolites and
may have other roles similar to F. hepatica TPx

Suttiprapa et al. (2008)
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1999), since lacto-N-neotetrose lacking LewisX had

no effect on DCW differentiation to an IL-4 pro-

ducing phenotype in response to LPS. Importantly,

the induction of accessory molecules is required

to increase the strength of an immune response;

DC-SIGN has strong affinity for intercellular ad-

hesion molecule-3 (ICAM3) via the LewisX struc-

ture (Bogoevska et al. 2007), suggesting a possible

mechanism used by LNFPIII to bind to DCW and

interfere with cell-to-cell communication with other

immune cells (Appelmelk et al. 2003). The multi-

valency of LNFPIII is important for its bioactivity,

since monovalent LNFPIII was shown to be in-

capable of inhibiting antigen-induced peripheral

bloodmononuclear cell (PBMC) activation (Velupillai

et al. 2000). At the signalling level, LNFPIII in-

creases nuclear factor (NF)-kB activity in DCW to

a level similar to LPS; however, a second phase

(prolonged NF-kB activation associated with IkBb
degradation) was not observed. Use of the nuclear

import inhibitor, SN50, and NFkB-deficient mice

revealed that LNFPIII effects on DCW were indeed

NFkB-dependent (Thomas et al. 2005). Collecti-

vely, these studies suggest that LNFPIII (or poss-

ibly fragments thereof) could be used to extrinsically

manipulate DCW function as a way of limiting

immunopathological reactions/changes or control-

ling immune cell responsiveness.

The stimulation of IL-10 and IL-12p40 from

murine peritoneal macrophages by cercarial ES pro-

ducts required the presence of TLR4, whereas the

production of IL-6 was TLR4 independent (Jenkins

et al. 2005). Furthermore, IL-6 release was reduced

following protease treatment of the ES products

suggesting a proteinaceous ligand, and sodium per-

iodate ablated activity of the cercarial extract, in-

dicating the presence of glycans. It is plausible that

cercarial products contain proteins/glycoprotiens

that can act via TLR4, highlighting the promis-

cuity of TLR4 as more than an LPS receptor.

Other TLRs have been implicated as receptors for

schistosome ligands. Lyso-phosphatidlyserine from

S. mansoni induces DCW maturation and decreases

IL-12p70 production via TLR2. The activity is

abrogated by TLR2-blocking antibodies (van der

Kleij et al. 2002), whereas host phosphatidylserine

neither activates TLR2 nor induces DCW matu-

ration. Additionally, phosphoserine alone is not

effective in this system, indicating that the acyl and

phosphoserine groups of S. mansoni lysophos-

phatidylserine are required for the effect. Inhibition

of lysophosphatidylserine acyltransferase (LPC-AT)

did not affect TLR4 expression or the binding of

LPS, but it did prevent TLR4 translocation to lipid

rafts and thus blocked the formation of the TLR4

complex with a resultant decrease in TNFa and

IL-6 production (Jackson et al. 2008). It is possible

that S. mansoni lysophosphatidylserine also signals

through TLR4 in a similar manner. Studies such

as these illustrate an emergent theme, in which

reponses to helminth-derived molecules occur via

receptors that have been defined on the basis of their

ability to recognize conserved microbe-derived pro-

ducts ; however, the data must be interpreted with

caution, since the possibility of bacterial contami-

nation of the helminth extracts is omnipresent.

Fasciola hepatica. ES products from adult F. hep-

atica (FhES) contain a glycan that is cytotoxic to

eosinophils and acts via tyrosine kinase and caspase-

dependent mechanisms (Serradell et al. 2007).

Induction of AAMs often accompanies an infection

with helminths, and it has been reported that

F. hepatica thioredoxin peroxidase elicits AAMs

production (Donnelly et al. 2005). Numerous studies

have shown that AAMs are induced by IL-4/IL-13

(Stein et al. 1992); however, in the case of F. hepatica

thioredoxin peroxidase, this conversion appeared to

be IL-4-independent (Donnelly et al. 2005). The

peroxidase also increased transforming growth

factor-b (TGFb) and PGE2 while decreasing IL-10,

IL-12 and IL-18 from stimulated macrophages –

such events in vivo would skew the immune reponse

in favour of immunoregulation/immunosuppression

and away from TH1-dominated pro-inflammatory

reactions. Complementing these findings, the in

vitro treatment of bovine macrophages with FhES

products inhibited IFNc and NO production in re-

sponse to bacterial products and skewed the macro-

phage population towards an AAM phenotype; the

latter event was lost by heat treatment of the ES

products (Flynn and Mulcahy, 2008). This empha-

sizes that we must constantly be vigilant of the

possibility that parasite-derived molecules, as well as

those produced by the host (e.g., cytokines), can

modify the host’s immunity. Finally, cathepsin L

appears to be a dominant molecule in FhES and may

aid F. hepatica by degrading host tissue to assist

parasiteentry/migration,andinterferingwiththehost’s

immune response by, for example, the degradation

of IgG (Smith et al. 1993; O’Neill et al. 2001).

Cestodes

Pseudophyllidean and cyclophyllidean tapeworms

usually elicit limited damage in the alimentary tract

of their definitive host. However, they are recog-

nized by their host (i.e., anti-worm antibodies are

generated) so, the ability to suppress or negate host

immunity would remain a priority for the helminth

(see Table 2).

Taenia crassiceps. T cells from T. crassiceps-

infected mice are hypo-proliferative and, in the

presence of excretory/secretory (TcES) products,

show diminished responses to mitogen stimulation

in vitro (Spolski et al. 2000, Scuitto et al. 1995).

Administration of TcES products to mice caused

expansion of F4/80+ Gr1+ cells, and these cells

Helminth-derived immunomodulators 129

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Apr 2009 IP address: 128.119.168.5

Table 2. Selected examples of immunomodulatory molecules from cestodes

Cestode Worm product Bioactivity Reference

Echinococcus
multilocularis

ES product Modifies macrophage accessory function leading to inhibition of lymphocyte
proliferation in vitro

Rakha et al. (1991)

Metacestode
glycosphingolipids

Inhibits PBMC proliferation; decreases IL-2/IL-2 receptor expression Persat et al. (1996)

14-3-3 proteins in ES
products

Inhibits LPS-induced nitric oxide production by rat macrophages Andrade et al. (2004)

Echinococcus
granulosus

E4 Gala1,4Gal glycan from
protoscolesces extract

Inhibits mitogenic-induced proliferation; increases IL-10 Dematteis et al. (2001)

Antigen B protease inhibitor
in hydatid cyst fluid

Inhibits neutrophil recruitment in vitro ; increased production of IL-4 and IL-13
by human PBMCs; impairs human DCW differentiation but polarizes maturation
of immature DCW to TH2

Shepherd et al. (1991)
Rigano et al. (2001, 2007)

Taenia
multiceps

Glucose lectin in cyst fluid May have similar function as ES product of E. multilocularis Judson et al. (1987)

Taenia
taeniaeformis

19.5 kDa proteinase inhibitor
from somatic extract

Inhibits splenocyte proliferation in response to mitogenic and antigenic stimuli Leid et al. (1984, 1986)
Suquet et al. (1984)

ES products Sequesters complement; decreases mitogen-induced splenocyte proliferation IL-2
production

Rikishia et al. (1985)
Burger et al. (1986)

Taenia
crassiceps

Interferon-c analogue (p66) in
ES products

Enhances mitogen-induced splenocyte proliferation and IFNc and IL-10 production;
increases nitric oxide production by macrophages increases

Spolski et al. (2002)

Taenia solium RNA peptide in metacestode
extracts

Inhibits response to Salmonella antigens as well as mitogen-induced proliferation
and inflammatory responses to metacestode antigens, correlating with decreased IL-2,
IFNc and IL-4; reduced TNFa production by macrophages following LPS stimulation

Arechavaleta et al. (1998)
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were capable of blocking T cell activation in vivo.

Glycans in theTcES were essential for this response,

since the treatment with sodium periodate signifi-

cantly reduced F4/80+ Gr1+ cells in the peritoneal

cavity of infected mice and the production of cyto-

kines and AAM (Gomez-Garcia et al. 2005). Ex-

tracts from the adult worm also directed a strong

TH2 polarization (IL-4 production) and enhanced

antibody production (IgG1 and IgE) in mice co-

treated with ovalbumin (Gomez-Garcia et al. 2006).

Concomitant with these events was an increased ex-

pression of markers indicative of AAMs, a predicted

decrease in IFNc and iNOS expression and in-

creased synthesis of IL-10 and TGFb. Like the ES

products, the glycan component was critical for

these effects of a crude antigen preparation from the

adult worm, because all were abolished or signifi-

cantly inhibited by sodium periodate treatment of

the extract.

Extracts from the T. crassiceps metacestodes

are highly mannosylated and contain both non-

fucosylated and fucosylated structures, including the

LewisX antigen (Dissanayake et al. 2004). In con-

trast to the adult worm antigen, the effect of which

was unaltered by the knock-out of TLR4 (Gomez-

Garcia et al. 2005), the ability of the glycans in the

metacestode extract to elicit IL-6 production from

murine peritoneal macrophages was reduced in cells

lacking TLR2 and TLR4 (Dissanayake et al. 2004).

The same researchers recently found that the ter-

minal beta-(1-4)-galactose residue in the LewisX

analogue can evoke IFNc production by murine

splenocytes and activate the NF-kB pathway. The

IFNc production was reduced by inclusion of

anti-TLR2, -4 and -6 antibodies in the assay

(Dissanayake and Shahin, 2007), again reiteriating

the notion that helminth-derived products can exert

their effects via TLRs.

Spirometra erinaceieuropaei. Excretory/secretoy

(SeES) products contain immunoglobulinases and a

heat-sensitive factor that inhibits LPS- and lipo-

teichoic acid (LTA)-induced TNFa and IL-1b
production from murine macrophages (Diragahayu

et al. 2004). The inhibitory effect of the SeES pro-

ducts was not due to the stimulation of PGE2, IL-10

or TGFb in the target cells (Fukushima et al. 1993).

The inhibition of macrophage production of TNFa,
IL-b andNOwas also shown in a study byKina et al.

(2005), in which a 90 kDa trypsin-sensitive glyco-

protein was identified as the active component in

the SeES products. Similarly, a 94 kDa component

of SeES products could block LPS-induced MAPK

(i.e., ERK1, ERK2 and p38MAPK) phosphoryl-

ation and the accompanying synthesis of TNFa
(Dirgahayu et al. 2002).

Hymenolepis diminuta. Extracts from adult H. di-

minuta reduced ConA-induced proliferation, IL-2

and IL-4 synthesis by murine spleen cells and

human PBMC cells in a concentration-dependent

manner (Wang and McKay, 2005). These events

were mirrored, to a large extent, by use of ES

products from the adult worm. A crude phosphate-

buffered saline (PBS)-solube extract of the adult

worm stimulated IL-10 release from murine spleno-

cytes and also contained a component with some

structural similarity to the p40 chain of IL-12, as

detected by enzyme-linked immunosorbent assay

(ELISA) and immunoblotting. The bioactivity in

both the worm extract and the ES products was

within a >50 kDa fraction and was partially sensi-

tive to boiling (Wang and McKay, 2005).

Nematodes

Parasitic nematodes have been the focus of extensive

research efforts because of their major socio-

economic impacts globally (Hall et al. 2008). There-

fore, a number of immunomodulatory molecules

have been identified from this phylum (Table 3). We

focus this discussion by highlighting known mole-

cules from Nippostrongylus brasiliensis, Trichinella

spiralis, Necator americanus, Trichuris suis, Ascaris

suum and Acanthocheilonema viteae.

Nippostrongylus brasiliensis. ES products from this

parasite direct a range of immunomodulatory re-

actions. As examples, (i) they reduce LPS-induced

IL-12p40 production and expression of a panel of

cytokine/chemokine genes in murine bone-marrow-

derived DCW, (ii) an undefined protein component

induces IL-4, IL-10 and IgE production, with

the IL-4 response requiring the presence of major

histocompatibility class II (MHC II) antigens and

so presumably MHC II-T cell restricted events, and

(iii) suppress TH1-events via an IL-10-independent

mechanism (Holland et al. 2000, 2005; Balic et al.

2004). The characterization of the ES products re-

vealed the presence of a serine acetylhydrolase

capable of reducing intestinal anaphylactic responses

by inactivating platelet activating factor and blocking

neutrophil and eosinophil aggregation (Blackburn

and Selkirk, 1992). The value of inhibiting eosino-

phil activity to the helminth is intuitive, and the

use of this acetylhydrolase would be beneficial in

limiting the pro-inflammatory effects of granulated

phagocytes in other diseases. Furthermore, NbES

blocked goblet cell hyperplasia, eosinophilia, neutro-

philia and airway hyper-responsiveness in murine

models of asthma (Keir et al. 2004; Trujillo-Vargas

et al. 2007). The active component/s was/were heat

and protease insensitive, suggesting a glycan-type

molecule. When NbES was administered intraperi-

toneally to ovalbumin-sensitized mice, they devel-

oped less pathology on ovalbumin re-challenge than

untreated controls ; in contrast, intranasal NbES

induced significant lung inflammation (Marsland
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Table 3. Selected examples of immunomodulatory molecules from nematodes

Nematode Worm product Bioactivity Reference

Ascaris suum Pseudocoelomic fluid protein(s) Induces eosinophil and neutrophil chemotaxis ; reduces bronchoalveolar lavage fluid cell
infiltrate, IL-5 and IL-13 as well as expression of CD40 and CD86 and is therapeutic
in murine asthma models

Tanaka et al. (1979)
McConchie et al.
(2006)

Somatic extract from homogenized
adults

Inhibits zymosan-induced murine arthritis ; reduces hypersensitivity to ovalbumin
independently of IL-10, and reduces cell proliferation, IL-2, IFNc, eosinophil peroxidase,
IL-4, IL-5 and eotaxin levels ;

Rocha et al. (2008)
Souza et al. (2002)
Lima et al. (2002)

200 kDa PAS-1 from adult somatic
extract

Inhibits airway allergy induced by the worm allergen via inhibition macrophage cytokine
release

Itami et al. (2005)

Phosphorylcholine-conjugated
glycosphingolipids from adults

Increases TNFa, IL-1b and IL-6 from human PBMCs; decreases B cell proliferation;
is pro-apoptotic ; decreases TH1 cytokine production from LPS+IFNc treated
macrophages

Deehan et al. (2002)
Kean et al. (2006)
Katz et al. (2001)

Anisakis simplex Heat sensitive larval homogenate Eosinophil chemotaxis Tanaka and Torisu
(1978)

Brugia malay 47 kDa serine protease inhibitor in
ES products

May inhibit neutrophil cathepsin G and elastase (disputed by Stanley and Stein (2003)) Zang et al. (1999)

62 kDa asparaginyl-tRNA
synthetase in ES products

Induces ERK1/2 MAPK phosphorylation via a G-protein coupled receptor; chemotactic
for immature DCW, lymphocytes, eosinophils, neutrophils and cells positive
for chemokine receptors CXCR1 and CXCR2,

Kron et al. (1995)
Ramirez et al. (2006)

Galectin-1 like molecule in ES
products

Binds galactose containing glycoconjugates and may protect helminth from eosinophil
and neutrophil mediated damage

Hewitson et al.
(2008)

12 kDa macrophage migration
inhibitory factor (MIF) in ES
products

Likely to have similar function as T. spiralis MIF Pastrana et al. (1998)

Necator
americanus

ES products contain calreticulin Identical to H. contortus calreticulin; C1q complement is bound which protects the
nematode from surface damage while promoting feeding by sequestering pro-coagulants.
May also bind C-reactive protein.

Kasper et al. (2001)

Trichinella
spiralis

Encysting stage produces a 12 kDa
macrophage migration inhibitory
factor (MIF)-like molecule

Potential to regulate host macrophage responses Wu et al. (2003)

Toxocara
canis

O-glycans in ES products May act as antibody decoys or to alter viscosity of host mucins Gems and Maizels
(1996) Loukas et al.
(2000b)

Tumour associated antigen
((GalNAc-O-Ser/Thr) (Tn))
and GalNAc polypeptide
N-acetylgalactosaminyltransferase
(ppGaNTase)

The antigen is synthesized by the enzyme via abnormal elongation of O-glycans and interacts
with macrophage C-type lectins and affects T cell activation

Clausen and Bennett
(1996) Casaravilla
et al. (2003)

ES products Impair eosinophil-mediated damage through unknown mechanism Giacomin et al.
(2008)

Teladorsagia
circumcincta

Adult and L4 ES products contain
thioredoxin peroxidase (TPx)

Likely to have similar function to F. hepatica TPx in affecting TH1/TH2 cytokine balance Craig et al. (2006)
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et al. 2005). Finally, and intriguingly, N. brasiliensis

may be worthy of consideration in cancer therapy.

When carcinogenic cells were injected with N. bra-

siliensis extracts, eosinophils were recruited and

attacked the cells (i.e., as if they were a helminth),

resulting in reduced size of the carcinoma (Frenoy,

2005).

Trichinella spiralis. Structural and biochemical

analysis of T. spiralis ES products (TsES) from

larvae or adult worms revealed the presence of

a nucleoside 5k-diphosphate phosphohydrolase

(apyrase, 17 kDa), a 5knucleotidase that preferentially
targets AMP to generate adenosine and an adenosine

deaminase (Gounaris, 2002; Gounaris et al. 2004).

The ability to regulate AMP metabolism has a

number of potential immunomodulatory effects,

since adenosine is known to inhibit platelet aggre-

gation, monocytes/macrophage TH1 cytokine pro-

duction, and neutrophil synthesis of reactive oxygen

species (Liaudet et al. 2002; Antonioli et al. 2008),

and is protective in a murine model of colitis

(Mabley et al. 2003). Also, adenosine stimulates

epithelial electrogenic Clx secretion, which creates a

driving force for water to move into the gut (Kottgen

et al. 2003) and could act to flush Trichinella larvae

as well as intestinal bacteria and protozoan patho-

gens from the host.

Necator americanus. Nematode-derived proteases

serve a number of vital roles in larval exsheathment,

the digestion of host tissue (facilitating invasion and

migration) and in immune evasion (Gamble et al.

1989, McKerrow et al. 1990). Necator americanus

ES (NaES) contains at least 7 cysteine proteases,

1 serine protease and various metalloproteases, some

of which act as immunoglobulinases (Kumar and

Pritchard, 1992). These enzymes exert a range of

bioactivities, the majority of which are unknown.

However, one can speculate that the cleavage of

immunoglobulins (Igs) could result in reduced

complement activation and that the activity of cells

that bind Igs and are activated by antibody-cross-

linkage by antigen (e.g., mast cells and eosinophils)

would be reduced. Eosinophil recruitment in vivo

could also be perturbed by, for example, the degra-

dation of the chemokine, eotaxin-1 (Culley et al.

2000). Additionally, a Necator americanus protein

was shown to evoke release of IFNc from murine

and human NK cells but not NKT cells (Hsieh et al.

2004).

Trichuris suis and Ascaris suum. Trichuris suis ES

(TrsES) products contain heat-stable and protease-

insensitive components which reduce the growth of

the bacteria Campylobacter jejuni, Escherichia coli

and Staphylococcus aureus (see Abner et al. 2001).

High performance liquid chromatography (HPLC)

did not reveal the presence of antibiotics (i.e.,

penicillin, streptomycin and amphotericin) in theD
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TrsES. The active component was <10 kDa in

size. A. suum pseudocoelomic fluid (PCF) also con-

tained a 6–14 kDa heat-stable, trypsin-sensitive

molecule which could kill Gram-positive bacteria

(e.g., S. aureus) (Wardlaw et al. 1994). The molecule

was designated ASABF (Ascaris suum antibacterial

factor) (Kato and Komatsu, 1996) and is similar to

insect defensins which penetrate Gram-positive

bacterial membranes. Genes encoding antibacterial

cecropins had been characterized in A. suum, and

chemically synthesized versions are active against

numerous species of bacteria (Pillai et al. 2005).

With increasing incidence of antibiotic-resistant

bacteria, the putative usefulness of these nematode-

derived molecules is apparent.

Acanthocheilonema viteae. Nematode-derived cy-

statins (cysteine protease inhibitors) have been re-

peatedly shown to regulate immune cell activity.

Cystatins from A. viteae (as well as those of other

filarioids, including Onchocerca volvulus and Brugia

pahangi) inhibit T cell proliferation, interfere with

antigen processing and presentation, and enhance

IL-10 production from stimulated murine spleen

cells (Osborne and Devaney, 1999; reviewed by

Hartmann and Lucius, 2003). Recently an A. viteae-

derived cystatin has been demonstrated to reduce

inflammation in a murine model of airway allergy

(Schnoeller et al. 2008). Onchocystatin (Ov17) from

O. volvulus was specifically shown to suppress

PBMC proliferation by decreasing expression of the

co-stimulatory molecule B7.2 (CD86) (Schonemeyer

et al. 2001), and infection with O. volvulus resulted

in IL-10/TGFb-mediated immune hypo-respon-

siveness (Doetze et al. 2000). In that study, the

source of the IL-10 and TGFb was most likely host

cells, but the possibility of helminth-derived ana-

logues of these cytokines should not be overlooked.

For example, a TGFb-like molecule has been iso-

lated from the filarial nematodes Brugia malayi and

Brugia pahangi (Gomez-Escobar et al. 2000).

The best described helminth immunomodulator

is an A. viteae ES 62 kDa glycoprotein (ES-62)

product. The bioactivity of ES-62 is critically de-

pendent on phosphorylcholine (PC) attached to an

N-glycan (likely GlcNAc) via acetlyglucosaminyl-

transferase I, such that recombinant ES-62 lacking

PC is generally non-functional (Goodridge et al.

2004; Houston and Harnett, 2004; Houston et al.

2008). Homologues of ES-62 exist in related nema-

todes (Stepek et al. 2002, 2004; Hewitson et al.

2008). Harnett et al. (2004) continue to explore

the bioactivity of ES-62 in cell culture systems and

murine models. Thus, ES-62 has been shown to

enhance the production of IL-4 by murine spleno-

cytes (Harnett et al. 1999) and decrease IFNc,
TNFa, IL-1b, IL-12 and IL-18 from DCW stimu-

lated with TLR ligands (Whelan et al. 2000;

Goodridge et al. 2001, 2004). Complementing

the latter, macrophages from mice implanted with

mini-osmotic pumps containing ES-62 were hypo-

responsive to bacterial stimuli. ES-62 treatment in a

murine model of arthritis resulted in significantly

less inflammatory disease, which was accompanied

by reduced IFNc, TNFa and IL-6, and increased

IL-10 synthesis by stimulated lymphocytes (Mc-

Innes et al. 2003). Significantly, IFNc and T cell

proliferation remained suppressed for up to 50

days after treatment whereas TNFa and IL-6 sup-

pression required ongoing exposure, as did the

inhibition of the production of collagen-specific

antibodies. ES-62 also prevented B lymphocyte pro-

liferation, and less IgG2awould contribute to reduced

auto-immune driven arthritis (Wilson et al. 2003).

ES-62 inhibits phosphorylation of immuno-

receptor tyrosine-based activation motifs (ITAM)

following B cell receptor ligation via the induction of

the Src homology protein (SHP-1) tyrosine phos-

phatase. This effectively prevents the recruitment of

crucial signalling molecules, such as protein kinase C

(PKC) (Goodridge et al. 2005a). A similar inhibition

of PKC activity may relate to the ability of ES-62

to inhibit TH1 cytokine production (Deehan et al.

1997). In contrast, ES-62 inhibition of mast cell

mediator release following the cross-linking of

FceRI did not require tyrosine phosphatase activity

(Melendez et al. 2007). Instead, the increase in

intracellular Ca2+ elicited by receptor cross-linking

was affected and mobilization of phospholipase D

and sphingosine kinase was disrupted (Goodridge

et al. 2005a). FceRI-mediated NF-kB activation and

the consequent synthesis of pro-inflammatory cyto-

kines were abrogated by ES-62 through the dis-

ruption of the p50 and p65 subunits of NF-kB
(Melendez et al. 2007). Given the pivotal role that

mast cells play in immediate hypersensitivity and

allergic reactions, a molecule, such as ES-62, could

have many therapeutic applications.

The effect of ES-62 on mast cells appears to re-

quire TLR4 (Melendez et al. 2007), and this is in

agreement with the examination of the effects of

ES-62 on murine macrophages and DCW. This is

not entirely unexpected, since PC can be a com-

ponent on pathogen-associated molecular patterns

(Goodridge et al. 2005b). Thus, cells deficient in

TLR4 or MyD88 (a key intracellular adaptor mol-

ecule) were unaffected by ES-62. The utilization

of MyD88 may be critical, since cytokine-inducing

stimuli that do not require this molecule, for ex-

ample, the ligation of TLR3 or the accessory mol-

ecule CD40 in macrophages, are not affected by

ES-62 treatment (Goodridge et al. 2005b). More-

over, a natural mutation in the TIR domain in the

TLR4 gene of C3H/HeJ mice renders these animals

unresponsive to LPS, yet the ES-62 response

remains, indicating that the helminth-derived mol-

ecule uses TLR4 in an unorthodox manner. It should

be noted that the inhibitory effect of ES-62 can
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be overridden, as observed in Toxoplasma gondii-

infected mice, in which immunity relies on TH1

cytokines from a variety of cell types (Couper et al.

2005), or when T or B cells are challenged with two

TH1-inducing antigens from O. volvulus (see Al-

Riyami et al. 2008).

While the goal of this commentary is to illustrate

the immunomodulatory effects of helminth-derived

molecules and the potential of these molecules to

serve as drugs or templates for drug design, it would

be naı̈ve to think that all parasite products would be

beneficial. This point is intuitive and we will not

belabour it here, but for the sake of balance in this

discussion, we draw the reader’s attention to a few of

many examples in which helminth-derived products

elicit pathological reactions (Hill et al. 1993; Lee

et al. 2006; Kim et al. 2008).

We have presented selected examples of immuno-

modulation by parasitic helminth-derived molecules.

Since the essence of any host-parasite relationship

is specificity, it follows that nuances of immuno-

modulation will be parasite-, and indeed life-cycle

stage-specific. However, some commonality emerges

from these studies and, as generalizations, helminth-

derived products mobilize a TH2 cytokine response

(and ablate TH-1 events), stimulate the synthesis

of immunomodulatory/immunosuppressive mol-

ecules (e.g., IL-10, TGFb, PGE2), and some evoke

eosinophil (and neutrophil) apoptosis. All of these

events would ameliorate inflammatory disease and,

as a pharmacopoeia for new drugs, the potential of

the parasitic helminths should not be underplayed.

Yet, much remains to be explored, to move the field

from a series of intriguing observations in vitro and

in rodents toward the development of drugs with

a safety profile compatible with testing in clinical

trials. At such a juncture, addressing issues relating

to the in vivo stability and pharmacodynamics, and

even the delivery methods of the helminth-derived

molecule or drug, will be critical if new therapeutic

modalities are to be achieved.

HELMINTH GLYCOBIOLOGY

Parasitic helminths as a group express or secrete/

excrete a variety of molecules that have immuno-

modulatory properties. These molecules can be

classical proteins or lipid-based, and many others are

glycoproteins. We have opted to focus on parasite

glycoproteins as molecules that could serve as mod-

els for the development of anti-inflammatory or im-

munoregulatory drugs, and will describe how such

molecules can be isolated, characterized and might

interact directly with mammalian cells.

Glycan types

An important type of protein post-translational

modification is glycosylation, in which sugar residues

are added on to a core protein/sugar sequence,

resulting in antennary structures of differing com-

plexity in terms of carbohydrate variety, linkage,

presence of sulphated groups and antennae num-

bers. N-linked glycans are attached to asparagine

(Asn) via the tripeptide sequence Asn-X-Ser/Thr,

where X represents any amino acid except proline.

N-glycans containing LDN (GalNAcb1,3GlcNAc)

in antennary regions are considered ‘complex’

and are often capped by sialic acid or fucose via

sialyl- and fucotransferases. O-linked glycans are

attached to serine (Ser) or threonine (Thr) and, un-

like N-glycans, do not share a common core sugar.

O-glycan diversity is due to the presence of 8 poss-

ible core sugars. ‘Hybrids’ contain mannose and

N-acetyllactosamine attached to a Man3GlcNAc2
chitobiose core.

Glycan isolation

Technological advances in the last 30 years have

revolutionized glycoconjugate analysis, and con-

siderable data can now be gleaned from minute

amounts of material. Thus, metabolic radio-isotope

labelling of carbohydrates using [3H], [125I] and [14C],

HPLC and fast performance liquid chromatography

(FPLC), lectin affinity chromatography, followed

by borate elution to increase the yield of glycans,

coupled with more traditional approaches (e.g.,

high temperature [95 xC] hydrazinolysis, enzymatic

cleavage and the use of periodate/borohydride to

linearize sugar rings and remove reactive aldehydes)

can yield considerable data on the nature of complex

glycoproteins. Thus, mannose and fucose residues

can be labelled using [2-3H]-mannose, sialic acid,

GalNAc and GlcNAc with [6-3H]-glucosamine,

whereas [6-3H]-galactose labels Gal and Glc. Further

fractionation of labelled glycans can be accomplished

via chromatography using agarose saturated with a

single lectin type that reacts with carbohydrates in

specific linkages (e.g., Phaseolus vulgaris agglutinin-

agarose for tri-and tetra-antennary N-glycans pos-

sessing a-mannose substituted at C-2 and C-6

with Galb1,4GlcNAc) (Morelle and Michaelski,

2004). O-linked glycans have been analysed follow-

ing b-elimination/release by mild alkaline and

sodium borohydride treatment. However, this pro-

cedure releases some N-linked glycans and destroys

O-acetyl groups, both of which can be avoided

without lowering the yield of released glycans

by using ammonia-borane b-elimination, with the

added benefit that this treatment improves analysis

via MALDI-MS (matrix assisted laser desorption/

ionization time of flight) or CE-ESI-MS (capillary

electrophoresis coupled to electrospray ionization

mass spectrometry) (Huang et al. 2002).

All of these methodologies have been used to

characterize helminth-derived glycans (Kang et al.

1993; Schallig and van Leeuwen, 1996; Casaravilla
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et al. 2003). For example, PNGase F and A treat-

ment or methanolysis-evoked release of radio-

isotope labelled N-glycans revealed fucosylated

structures in the tegument of adult S. mansoni (see

Nyame et al. 1989) and in H11 from Haemonchus

contortus (see Haslam et al. 1996), while Tetra-

gonolobus purpureas agglutinin-agarose electrophor-

esis and immunoblotting of metabolically labelled

fractions with immune antisera demonstrated

the LewisX antigen in schistosome glycoproteins

(Srivatsan et al. 1992).

Other exquisitely sensitive techniques, such as

fast atom bombardment (FAB)-MS, have provided

structural information on glycans from Dictyocaulus

viviparus, H. contortus, T. spiralis, S. mansoni and

O. volvulus (see Haslam et al. 1996, 1999, 2000)

as well as demonstrating O-glycan abundance in

Toxocara canis ES products and in the glycocalyx

of schistosome cercariae (Khoo et al. 1995). FAB-

MS also demonstrated tyvelose (3,6 dideoxy-D-

arabinohexose) on tri- and tetra-antennary glycans

of T. spiralis, a modification previously regarded as

unique to Gram-negative bacteria (Wisnewski et al.

1993). Although FAB-MS provides high sensitivity,

MALDI-TOFmass spectrometry isy10–100 times

more sensitive (Huberty et al. 1993) and allowed

the structure of the IL-4-inducing ES glycoprotein

of S. mansoni, IPSEa1 to be characterized (Wuhrer

et al. 2006).

Peptide mass finger-printing (PMF) determines

protein identity following resolution by polyacryl-

amide electrophoresis. Resolved proteins are ex-

cised, cleaved by proteolysis, their masses determined

by MALDI-TOF-MS and compared against a pro-

teome database. When combined with lectin chro-

matography, mass spectrometry revealed the LewisY

antigen (Fuca1,2Galb1,4(Fuca1,3)GlcNAcb1) as a

modification of tegumental, but not ES glycopro-

teins from S. bovis (see Ramajo-Hernandez et al.

2007). Analysis by nanoESI (nano ElectroSpray

Ionization) mass spectrometry enabled the charac-

terization of the structures of immunogenic glyco-

sphingolipids from S. mansoni (see Wuhrer et al.

2002, 2004). When nanoESI is combined with

fourier transform ion cyclotron resonance (FTICR),

analysis of intact, heavily sialyated glycoproteins

can proceed without the need for chromatography,

enzymatic treatment or derivitization (Nagy et al.

2004). FTICR can include fragmentation by elec-

tron capture dissociation (ECD), which cleaves

protein backbones of glycoproteins without remov-

ing glycosylated regions, allowing glycosylation site

determination. Combining ECD with external ac-

cumulation (XA) reduces ‘background’ while in-

creasing resolution of unstable products, and was

used to analyse <10 kDa glycoproteins containing

sialic acids O-linked to GalNAc (Haselmann et al.

2001). Recently, quadrupole ion trap (QIT) tech-

nology has been coupled to ESI and MALDI-TOF

MS for glycoprotein analysis, in order to facilitate

further molecular resolution of the isolated mol-

ecules (Demelbauer et al. 2004). When coupled to

MALDI-TOF, nuclear magnetic resonance (NMR)

radio-isotope labelling and glycosidase treatment,

the structures of glycosphingolipids from A. suum

were obtained (Friedl et al. 2003). The technology

has culminated in quadrupole orthogonal acceler-

ation time of flight mass spectrometry (Q-TOF)

(Morris et al. 1997), which may be the most sensitive

means for glycoprotein analysis.

These techniques can be applied to pure com-

pounds, and many are suitable for analysis of mix-

tures of molecules. For example, CE-ESI-MS is

superior to both CE and HPLC, and provides en-

hanced resolving power and separation of molecules

based on electrophoretic mobility. Sheathless CE-

ESI avoids sample dilution while increasing ioniza-

tion and resolution efficacy. These qualities make

CE-ESI-MS analysis attractive for glycoprotein

investigations (Bateman et al. 1998). However,

mass spectrometry has proven to be indispensable

for biological analysis and has enabled comparisons

of glycans among helminths (see Morelle and

Michaelski, 2004). From this brief account, it is clear

that the combination of these techniques with

genomics, proteomics and glycomics have brought

us to a point where accelerated progress in the

elucidation of helminth-derived molecules (e.g.,

glycans) would be anticipated.

Are Siglecs receptors for helminth-derived molecules?

Some glycans from parasitic helminths appear to

signal through TLRs. However, there are additional

mammalian receptors which primarily recognize

carbohydrates that are involved in immunomodu-

lation, and these may have been ‘co-opted’ into the

parasites strategy to overcome or skew host im-

munity. Siglec (sialic acid immunoglobulin-like

lectin) receptors are expressed by leukocytes and

recognize sialic acids; for example, Siglecs 1,3 and

4 recognize terminal a 2,3 sialic acid (Powell and

Varki, 1994; Freeman et al. 1995; Collins et al.

1997) ; Siglec-2 binds a 2,6 sialic acid (Kelm et al.

1994) ; and, Siglecs 5, 7 and 9 recognize both sugar

moieties (Cornish et al. 1998; Zhang et al. 2000).

The cytoplasmic tails of Siglecs possess immuno-

receptor tyrosine-based inhibitory motifs (ITIMs)

and, so, Siglec activation is often associated with

immunosuppression. For instance, the ligation of

Siglec 9, and to a lesser extent Siglec 5, reduced

TNFa production by macrophages while increasing

IL-10 synthesis (Ando et al. 2008). Also, the re-

pression of Siglec 3 (or CD33) expression with

siRNA increased the spontaneous release of IL-1b
from monocytes (Lajaunias et al. 2005). These

findings, and others (see Ikehara et al. 2004), lend

credence to the hypothesis that Siglec-mediated
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recognition of ‘self ’ sialic acid by leukocytes may

serve to generally dampen immune responses and

perhaps promote tolerogenic events.

The ligation of Siglec 8 on eosinophils (and Siglec

9 on neutrophils ; von Gunten et al. 2005) induces

apoptosis (Nutku et al. 2003), and the ability of hel-

minths to trigger such a response would be to their

benefit. The published literature on parasitic hel-

minths possessing sialic acid-based glycoproteins is

conflicting, with many studies suggesting that hel-

minths do not synthesize them, and there is an

equally convincing body of evidence demonstrating

that sialic acid reactivity can be detected in worm

extracts or ES products from many helminth species

(McDiarmid and Podesta, 1984; Apinhasmit et al.

2000; Elayoubi and Craig, 2004; Johnston, unpub-

lished observations). We feel that this issue is de-

serving of clarity that will only come with additional

well-controlled experimentation. Currently, there

are no data on helminth-derived molecules that can

bind Siglecs, and thus we can only speculate on the

possibility of helminth-derived glycans-Siglec recep-

tor interactions as a mechanism for helminth para-

sites to elicit a general immunosuppression in their

hosts.

Are galectins receptors for helminth-derived

molecules?

Beta-galactose binding lectins (galectins) are se-

creted carbohydrates that bind cell surface and

matrix-associated glycans. Fifteen galectins have

been identified in mammals and each possesses a

conserved carbohydrate recognition domain (CRD)

which binds N-acetyllactosamine (LN), Galb1,
4GlcNAc or Galb1,3GlcNAc on N- and O-linked

glycans (Milos and Zaliik, 1983). Galectins can be

monovalent (one CRD), bivalent or chimeric (one

CRD plus a unique amino terminal sequence).

There are many examples of galectin modulation of

immune activity, such as the induction of apoptosis,

enhancement of macrophage phagocytosis, TH2-

TH1 skewing and the induction of regulatory T cells

(Rabinovich et al. 2007). Current data suggest that

the helminth-derived glycans can interfere with

galectin-driven events. Galectin-1 ligation by hel-

minth galactose can potentially decrease TNFa
and IFNc and prevent mast cell degranulation and

neutrophil activity (Rabinovich et al. 2002). The

galectin-3 receptor recognizes lactose-containing

glycans (LN and LDN) from S. mansoni. This in-

teraction has been implicated in granuloma forma-

tion (van den Berg et al. 2004) (recently disputed

by Bickle and Helmby, 2007) and in eosinophil-

mediated cytotoxicity (Truong et al. 1993), although

the effect on eosinophils could be reduced by the

galectin-3 inhibition of IL-5 production (Cortegano

et al. 1998). In addition, mice in which galectin-3

expression is reduced (via genetic manipulation)

display reduced numbers of splenic T and B

cells, less liver pathology and increased levels of

TH1-type cytokines following S. mansoni infection

(Breuilh et al. 2007). Similarly, galectin-3 appears

to provide a degree of protection against Clonorchis

sinensis-induced cholangiocarcinoma (see Junking

et al. 2008). With the exception of galectin-3 (Yang

et al. 1996), galectin activation of a cell often induces

apoptosis (reviewed by Hernandez and Baum, 2002),

an event that can be inhibited by a 2,6 sialic acid

(Leffler and Barondes, 1986). Since many helminths

produce sialic acids, the release of these glycans

from the worm could increase the life-span of im-

mune cells.

Many helminths also secrete galectins (Turner

et al. 2008). For example, a 34 kDa galectin in

O. volvulus is temporally expressed by third-stage

larvae (L3) and adults (Joesph et al. 2000), shares

40% homology to a Teladorsagia circumcincta- and

H. contortus-derived galectin (Greenhalgh et al.

1999), and is recognized by sera from infected

individuals. The related galectin from O. volvulus,

OvGalBP, binds IgE and may protect against

eosinophil and neutrophil-mediated damage of the

helminth (Klion et al. 1994). Galectin-1 adminis-

tration is therapeutic in a plethora of murine models

of autoimmune disease, where it is associated with

reduced TH1 and TH17 events and increased

CD4+ T cell apoptosis (Salatino et al. 2008). A

galectin-1 like molecule has been identified in

nematodes (Table 3). Moreover, chitin (a GlcNAc

polymer) is abundant in helminths and profoundly

affects immunity by mobilizing AAMs, eosinophils

and basophils in vivo (Reese et al. 2007).

Are C-type lectins receptors for helminth-derived

molecules?

C-type lectins (CTLs) are Ca2+-dependent carbo-

hydrate receptors involved in signalling, antigen

presentation and cell-cell adhesions (Pyz et al.

2006). CTLs include the collectins, which bind

mannan proteins, the selectins, which bind sialyated/

sulphated glycans, and the macrophage mannose

receptor (MMR). A few studies have shown that

parasitic helminths produce lectin-type molecules

and molecules that bind host lectins, thus imparting

the potential to affect processes as diverse as macro-

phage activation, immune cell trafficking and den-

dritic cell activity. For instance, mannan-binding

lectin (MBL) interacts with glycans on S. mansoni

and T. spiralis, resulting in complement fixation

(Gruden-Movsesijan et al. 2003). Similarly, the

macrophage galactose-type lectin (MGL), which is

also expressed on DCW, binds the LewisX antigen

and a/b GalNAc, both of which occur in S. mansoni

LDN and LDNF (van Vliet et al. 2005). Lectin-

targeting of the worm surface would be aimed at

worm destruction, although the shedding of the
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glycan from the parasite could be a component

of an immune evasion strategy. Parasite-secreted

CTL-like products have been identified and include

ES products of y32 and 70 kDa from Toxocara

canis which resemble the MMR (CD206) and the

low affinity IgE receptor (CD23), respectively (Loukas

et al. 1999, 2000a). Lectins encoded by ESTs in

Ancylostoma ceylanicum andAscaris suum exist in the

GenBank database and aNecator americanus lectin is

predicted from transcriptome analysis (Daub et al.

2000). Exactly how helminth-derived glycans or

lectin-like molecules modulate mammalian immune

responses is not known; however, there is potential

for pure forms of these molecules to be used as

potent drugs. For example, glycans and SEA from

S. mansoni can bind to DC-SIGN (Meyer et al.

2005; van Liempt et al. 2007). DC-SIGN is im-

portant in recognizing mannose-containing carbo-

hydrates and is also an activation signal that helps

direct DCW migration from tissues to lymph nodes

to initiate primary adaptive immune responses.

CONCLUSIONS

The concept of helminth-derived molecules as a

source of immunomodulatory agents is fully estab-

lished (Hartnett and Harnett, 2008), and the litera-

ture is flush with examples of how crude extracts and

partially characterized molecules from many species

of parasitic helminth can affect virtually all aspects of

innate and adaptive immune responses. To date, this

wealth of data has not been converted into a slew of

new drugs. While the promise of parasitic helminths

as a pharmacopeia has yet to be fulfilled, this should

not deter future research in this area, as the potential

pay-back in terms of new drugs is immense. Indeed,

one could foresee that a number of novel drug

candidates will be forthcoming in the next 5–10

years, given the advent of technology for the purifi-

cation and characterization of molecules from small

amounts of tissues and the synthesis of agents for

testing in high throughput immunological assays.

We subscribe to, and will leave the reader with the

view presented by Falcone and Pritchard (2005):

‘‘The fact that the compounds from parasites might

have evolved to unlock the human immune system

selectively will also result in less attrition when

compounds are tested for safety and adverse activity

profiles’’.
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