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I. INTRODUCTION

Thyroid hormone is essential for normal brain development.  This concept is supported by

both clinical and experimental evidence indicating that thyroid hormone excess (1-5) or deficit (6-

10) during development is associated with irreversible developmental and neurological

abnormalities.  Moreover, it is generally believed that the severity of thyroid hormone-induced

abnormalities corresponds to the degree to which thyroid hormone levels are abnormal (11-13).

However, the key questions within a risk assessment framework are, "how low is too low?" and

"how much is too much?" as it relates to circulating concentrations of thyroid hormone.  Recent

evidence suggests that the answers to these questions depend on the timing of toxicant exposure

and the end point(s) evaluated.  Moreover, new studies indicate that toxicant exposure can affect

thyroid hormone action in the developing brain independent of effects on circulating levels of

thyroid hormone in the dam.  Therefore, a more formal way to frame the above question is, "what

are valid end points of thyroid hormone action that can be used in toxicological studies to accurately

assess risk to human health?".

The goal of this review is to provide an analysis of the logic employed by paradigms

presently used for the analysis of risk associated with thyroid toxicity, and to place this within the

context of emerging insights gained from recent clinical and experimental research.  There are two

main themes.  First, the present method for interpreting thyroid toxicity incorporates only one direct

measure of thyroid hormone action, but it is usually ignored; thus, establishing an adverse effect of

toxicant is problematic.  Second, we have the knowledge base and technology to identify direct

measures of thyroid hormone action, and to determine their validity as end points in toxicology

studies.

II. ENDOCRINOLOGY OF THE THYROID SYSTEM

The active thyroid hormones, thyroxin (T4) and triiodothyronine (T3), are two of the

iodothyronines formed in the thyroid gland.  These hormones are synthesized in an unusual way in

that they are derived from coupling two iodinated tyrosyl residues that make up the larger hormone
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“precursor”, thyroglobulin (TG).  Thyroglobulin is a large glycoprotein containing two identical

subunits each of nearly 3,000 amino acids, creating a 660 kDa mature protein (14).  Following

iodination, the protein is stored in the "colloid", the fluid filling the central core of the thyroid

follicle.  At the time of hormone release, iodinated TG is taken up into the cell from the colloid,

digested by lysosomal enzymes and liberating T3 and T4 into the blood (15).  Thyroxin is the

predominant iodothyronine released by the thyroid gland; circulating triiodothyronines are formed

largely from peripheral deiodination of T4 (16).  The pituitary glycoprotein hormone, thyrotropin

(TSH) (17), regulates the synthesis and secretion of thyroid hormones by activating adeylate

cyclase in thyroid follicular cells (18).  However, there are a number of important extrathyroidal

processes that combine to maintain circulating thyroid hormones within a relatively narrow

concentration range (16).

Normal variation in circulating concentrations of T4 reflects short-term pulsatile and diurnal

variation (19).  Thyroxin and/or T3 exert a negative feedback effect on pituitary secretion of TSH

(20, 21), and on the hypothalamic secretion of the releasing factor, thyrotropin-releasing hormone

(TRH) (22-24).  Although it is clear that TRH is a major factor regulating TSH secretion, several

hypothalamic factors contribute to TSH regulation (20).  Moreover, some investigators suggest that

the primary role of TRH in the regulation of TSH secretion is to modulate the set-point around

which thyroid hormones act on the pituitary (25, 26).  Thus, circulating levels of thyroid hormones,

and the balance between different forms of these hormones, are controlled by a number of

processes.  Additional details of thyroid endocrinology are diagrammed and described in Figure 1.

III. INTERPRETATION OF THYROID TOXICITY STUDIES

A number of environmental chemicals have been shown to affect the thyroid system (27),

and the study of environmental goitrogenesis is well-developed (28).  Therefore, considering both

the varieties of chemicals affecting the thyroid system and the importance of thyroid hormone in

development and in general health, it is important to identify specific chemicals that exert effects on
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thyroid function or thyroid hormone action.  Several formal reviews on this subject have been

published (29, 30).

In principle, the adverse effects of toxicant-induced thyroid dysfunction would most

effectively be reflected in the specific effects of low or high circulating concentrations of thyroid

hormone.  This could be envisioned as equivalent to the uterotrophic assay for estrogens (31), or

the Hershberger assay for androgens (32).  However, there are few effects of high or low levels of

thyroid hormone that are both specific to thyroid hormone and unambiguously "adverse".  In adult

humans, for example, hypothyroidism is associated with a variety of neurological, behavioral and

psychiatric manifestations, but no single feature is diagnostic (33).  This is also true for

hyperthyroidism (34).  Therefore, in adult humans, the diagnosis of hypothyroidism requires

"awareness of the clinical features that define a patient's risk for thyroid hormone deficiency and

proper use of the two tests usually required to confirm the disorder: serum TSH and free thyroxine

(T4)" (35).  This statement implies that the diagnosis of thyroid dysfunction depends principally on

biochemical measurements of blood levels of thyroid hormones and TSH in the presence of some

of the many symptoms of thyroid hormone excess or deficit.

Although individual clinical symptoms lack definitive diagnostic value in humans,

experimental systems can be evaluated more thoroughly.  Therefore, it seems possible that end

points of thyroid toxicity exist that could be identified for testing effects of thyroid toxicity.  It is

known that thyroid hormone dysfunction produces deleterious effects on many organ systems

including heart, muscle, liver, and brain.  A partial list of thyroid hormone-responsive genes in these

various tissues is shown in Table 1.  However, no studies to date have begun to expand the end

points of thyroid toxicity for use in toxicological studies.  Moreover, although thyroid hormone is

well known to affect metabolism (36), body weight (37), and several aspects of behavior (38-40,

33), the smallest change in thyroid hormone required to observe significant effects on these end

points has not been determined.  Thus, the end point that provides the lowest effect level for thyroid

hormone itself has not been identified.  Likewise in development, thyroid hormone is known to be

essential for brain development, but these types of studies focus on understanding the
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developmental consequences of thyroid hormone action (41-45), or the mechanisms by which

thyroid hormone acts (46, 47, 8, 10).  As a result, these studies routinely use potent goitrogens such

as propylthiouracil or methimazole, or surgical thyroidectomy, to ablate thyroid function, and few

report a dose-response designed to identify sensitive end points for thyroid toxicity.

Because sensitive and valid end points of thyroid toxicity have not been identified, the

present end points of thyroid toxicity are focused on changes in circulating levels of thyroid

hormones and on thyroid morphology.  Thyroid morphology has become important to establish a

lowest adverse effect level (LOAEL) or no-adverse effect level (NOAEL).  In a toxicological

paradigm, the issue becomes focused on defining an end point - other than thyroid hormone levels

per se - that reflect an adverse effect.  As is evident in Figure 1, thyroid hormones regulate

circulating levels of TSH by negative feedback.  Therefore, when thyroid hormones are low, TSH is

elevated.  Because a sustained increase in TSH can increase thyroid cell size (hypertrophy) and, at

higher levels, can increase thyroid cell mitogenesis (hyperplasia) (29, 30, 18, 48), thyroid

morphology has become a standard end point for thyroid toxicity studies.  However, the general

concept is that the risk of thyroid cancer increases under conditions where the rate of cell division is

increased (i.e., thyroid hyperplasia).  Therefore, thyroid hyperplasia is considered to be reflective of

an adverse effect but thyroid hypertrophy is considered to be a physiological adaptation that

maintains homeostasis (29, 30).

A weakness in this reasoning is that changes observed in thyroid gland histopathology are

not a direct measure of changes in thyroid hormone levels.  Rather, it is a measure of changes in

thyrotropin levels.  Thyrotropin is a direct marker of thyroid hormone action, but it is usually

ignored as surrogate measure of thyroid hormone action on all thyroid hormone-responsive genes.

This is a weakness for two reasons.  First, thyroid histopathology can be evaluated using quite

sophisticated computer-assisted morphometric analyses followed by rigorous statistical evaluation,

or it can be evaluated in a less formal non-parametric manner.  These two approaches are likely to

give very different results.  Second, it is a weakness because an important marker of thyroid

hormone action is being ignored.  It is clearly established that thyroid hormone exerts a negative
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feedback effect on TSH (49).  This effect was shown early to depend on protein synthesis (50-52)

and occurs at low doses of T4 (53-59) and T3 (53, 60, 58).  Finally, periodic (i.e., pulsatile)

administration of T3 is more effective than tonic infusion at producing a negative feedback effect on

TSH (61).  These early studies are fully consistent with what is known about the molecular

mechanisms of thyroid hormone action.  It is now clear that the TRβ2 mediates negative feedback

on pituitary TSH (62, 63) and on hypothalamic TRH (64).  Thus, there is ample evidence that

circulating levels of TSH is a valid marker of thyroid hormone action, and that one can expect other

thyroid hormone-responsive genes to be affected in similar ways.  However, this is usually ignored.

IV. THYROID HORMONE AND BRAIN DEVELOPMENT

Thyroid hormone and the neonate.  It is well established that thyroid hormone is essential

for brain development during the neonatal period in both humans and animals, especially as

revealed in the disorder known as congenital hypothyroidism (CH) (67, 68, 7, 69-71, 1, 72, 73, 13).

Congenital hypothyroidism occurs at a rate of 1 in 3000 to 1 in 4000 live births (68).  There are

several causes of CH, including thyroid dysgenesis, agenesis and athyreosis, inborn errors of

thyroid hormone synthesis, and less often, secondary or tertiary hypothyroidism (68, 74).  Because

CH infants do not present a specific clinical picture early, their diagnosis based solely on clinical

symptoms was delayed.  In fact, only 10% of CH infants were diagnosed within the first month,

35% within 3 months, 70% within the first year, and 100% only after age 3 (75, 76).  As a result of

this delayed diagnosis and treatment, the intellectual deficits were profound.  One meta analysis

found that the mean IQ of 651 CH infants was 76 (77).  Moreover, the percentage of infants with

an IQ above 85 was 78% when the diagnosis was made within 3 months of birth, 19% when it was

made between 3 and 6 months, and 0% when diagnosed after 7 months of age (77, 78).

Because CH is difficult to diagnose on the basis of clinical symptoms alone, and because of

the profound consequences, mandatory neonatal screening for circulating thyroid hormones and/or

TSH has been implemented by a number of countries (68, 78).  Studies now reveal that no clinical

manifestations of CH occur if it is diagnosed and treatment initiated within 14 days of birth (13).
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This medical profile has become the principal example illustrating the importance of thyroid

hormone for normal brain development.  However, it has become clear recently that thyroid

hormone is also important during fetal development.

Thyroid hormone and the fetus.  Thyroid hormones are detected in human coelomic and

amniotic fluids as early as 8 weeks of gestation, before the onset of fetal thyroid function at 10-12

weeks (79).  In addition, human fetal brain tissues express receptors for thyroid hormone, and

receptor occupancy by thyroid hormone is in the range known to produce physiological effects as

early as 9 weeks of gestation (80, 81).  Finally, the mRNAs encoding the two known thyroid

hormone receptor types exhibit complex temporal patterns of expression during human gestation

(82).  These data indicate that maternal thyroid hormone is delivered to the fetus before the onset of

fetal thyroid function, and that the minimum requirements for thyroid hormone signaling are

present at this time.  The functional importance of thyroid hormone in fetal brain development has

been slower to recognize because of the difficulty in correlating what are sometimes subtle

differences in maternal thyroid hormone concentrations with pregnancy outcome.  However, studies

focused on 4 types of maternal abnormalities have led to a better appreciation of the importance of

thyroid hormones for the fetus.  These include endemic cretinism, autoimmune thyroid disease in

pregnant women, subclinical hypothyroidism in pregnant women, and premature birth.  These four

areas will be reviewed below.

Maternal thyroid hormones during pregnancy.  There are two forms of cretinism based on

clinical presentation (83, 84).  Neurological cretinism is characterized by extreme mental retardation,

deaf-mutism, impaired voluntary motor activity, and hypertonia (83).  In contrast, myxedematous

cretinism is characterized by less severe mental retardation, and all the major clinical symptoms of

persistent hypothyroidism (83).  Iodide administration to pregnant women in their first trimester

eliminates the incidence of neurological cretinism in geographic areas that are severely iodine

insufficient.  However, by the end of the second trimester, iodine supplementation does not prevent

neurological damage (85, 84).  Several detailed studies of endemias occurring in different parts of

the world, and reviewed by Delange (83), have led to the proposal that the various symptoms of the
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two forms of cretinism arise from thyroid hormone deficits occurring during different

developmental "windows of vulnerability".  This proposal is in contrast to the proposal that

neurological and myxedematous cretinism represent two ends of a spectrum of effects.

Nevertheless, these studies clearly indicate that thyroid hormone plays an important role in brain

development during fetal development and perhaps before the onset of fetal thyroid function.

Endemic cretinism is a case of severe thyroid hormone deficits.  The effect of subtle,

undiagnosed maternal hypothyroidism, or subclinical hypothyroidism during pregnancy, has been

much more difficult to relate to pregnancy outcome.  The concept and definition of maternal

hypothyroxinemia was developed in a series of papers by Man et al. (86-90).  Early definition of

maternal hypothyroxinemia was defined empirically - those pregnant women with the lowest

butenol-extractable iodine (BEI) among all pregnant women (91, 88).  This work was among the

first to document an association between subclinical hypothyroidism in pregnant women and

neurological function of the offspring.  Pop et al. (92) found that the presence of antibodies to

thyroid peroxidase in pregnant women, independent of thyroid hormone levels per se, was

associated with significantly lower IQ in their offspring.  In addition, subsequent studies have

shown that, for pregnant women with undiagnosed hypothyroidism, the children born to women

with T4 levels in the lowest 10th percentile of the normal range had a higher risk of low IQ and

attention deficit (93).  Excellent recent reviews discuss these studies in detail (91, 94, 95).  Taken

together, these data present strong evidence that maternal thyroid hormone plays a role in fetal brain

development prior to the onset of fetal thyroid function, and that the consequences of even mild

thyroid hormone deficits during pregnancy are neurological and irreversible (7, 70, 96, 97, 72, 98,

13).  However, despite the increased awareness of the importance of thyroid hormone during fetal

brain development, little is known about the mechanisms by which thyroid hormone affects the

fetus.

V.  MECHANISM OF THYROID HORMONE ACTION ON BRAIN DEVELOPMENT.  

Thyroid hormone receptors are nuclear transcription factors.  It is generally believed that

the majority of biological actions of thyroid hormone are mediated by their receptors - nuclear
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proteins that interact mainly with T3 (99, 100).  T3 receptors (TRs) are members of the

steroid/thyroid superfamily of ligand-dependent transcription factors (101-103), indicating that

effects on gene expression mediate the majority of biological actions of thyroid hormone.  TRs are

encoded by two genes, designated α and β c-erbA (104, 105).  These two genes produce three

functional TRs due to alternate splicing: TRα1, TRβ1, and TRβ2 (106-110).  Although there are

several TR isoforms, the binding affinity for T3 and for T4 is not different among the various forms

(111-113).  Thus, it is not possible to discriminate between TRα1 and TRβ1 by binding to T3.

However, the TRs exhibit a 50-fold greater affinity for T3 than for T4, making T3 the physiologically

important regulator of TR action.

Thyroid hormone exerts tissue- and cell type-specific effects.  Although the responsiveness

to thyroid hormone requires the presence of nuclear TRs, the effects of thyroid hormone vary from

tissue to tissue, even among those tissues that express TRs (37).  Different levels and combinations

of TR isoform expression may account in part for this observation (101, 102), but cannot account

for all tissue variability in responsiveness to thyroid hormone.  For example, most patients with

thyroid hormone resistance syndromes exhibit a mutation in the TRβ gene, but the phenotypes of

individuals carrying the same mutation can be different, indicating that other factors contribute to

thyroid hormone actions (63, 114).

Thyroid hormone also exerts variable effects in the brain.  For example, thyroid hormone

exerts a negative transcriptional effect on the gene encoding thyrotropin-releasing hormone (TRH)

(115).  However, this occurs solely in TRH-containing neurons in the hypothalamic paraventricular

nucleus (22, 116, 117) despite the widespread distribution of cells expressing TRH (118) and those

expressing TR (119).  This is true also for the gene RC3/Neurogranin, a well-characterized thyroid

hormone-responsive gene in the developing and adult brain (120, 121).  RC3/Neurogranin is

expressed with TR in many brain areas, but is regulated by thyroid hormone in a small subset of

these areas (122).  Thus, it is unlikely that thyroid hormone regulation of a specific gene will always
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be a marker of thyroid hormone action; rather, studies must focus on the proper gene expressed in

specific brain regions at the correct developmental time.

TRs exhibit specific temporal and spatial patterns of expression during brain development.

Young and colleagues (123) demonstrated that the α and β TRs exhibit distinct temporal and spatial

patterns of expression in the developing rat CNS.  TRβ1 is expressed in the ventricular zone of the

cerebral cortex early in development, and TRα1 is expressed in more superficial layers.  Because

the ventricular zone of the developing cortex contains neural progenitor cells undergoing cell

division and fate specification (124), this suggests that check points of cell division and fate

specification may be affected by thyroid hormone mediated by the TRβ1.  In contrast, TRα1 may

selectively mediate effects of thyroid hormone on elements of migration, differentiation, and

synaptogenesis.  Leonard et al. (125) have suggested that TRα2 is expressed exclusively in glial

cells, while TRα1 and TRβ1 are expressed predominantly in neurons.  Thus, thyroid hormone may

influence different developmental processes by different TR isoforms, all well before the fetal

hypothalamic-pituitary-thyroid system begins to function on G 17-20 (126).

TR function is modulated by interactions with two types of regulatory proteins.  Two

additional characteristics of the TRs must be considered to glimpse the range of regulatory

mechanisms governing thyroid hormone action.  First, TRs can interact with distinct nuclear

receptors including those for retinoids (retinoic acid receptors, RARs, and retinoid X receptors,

RXRs) (99, 101, 103).  Thus, an individual TR protein can dimerize with an individual RAR or

RXR forming a heterodimer pair.  Interestingly, the type of dimer (TRα1 or TRβ1 homo- or

heterodimer, or TRα1/RAR, etc) contributes to the mechanism by which a specific gene is targeted

for regulation (103).  Second, the ability of TRs to affect gene transcription requires them to interact

with nuclear cofactors, which are requisite mediators of ligand-dependent transcriptional activation

or repression of hormone responsive genes (127).  Cofactors are believed to remodel local

chromatin structure enabling nuclear receptors to activate or repress gene regulation.  Generally, the

specific recruitment of a cofactor complex with histone acetyltransferase activity appears to play a
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regulatory role in activating gene transcription, whereas the recruitment of a cofactor complex with

histone deacetylase activity appears to play a regulatory role in gene repression (128).  Therefore,

the sensitivity of a specific gene to regulation by thyroid may be modulated by the abundance of

specific cofactors.

Two kinds of observations support the hypothesis that changes in cellular levels of specific

cofactors modulate cellular responsiveness to steroid/thyroid hormones.  First, ligand-dependent

transcriptional activation by one nuclear receptor can be inhibited by ligand activation of another

nuclear receptor in vitro, even though this second receptor does not directly regulate the affected

gene (129, 130).  This observation indicates that nuclear receptors compete for available cofactors,

which if they are in limited supply, will attenuate the efficacy of hormone-dependent activation of

gene expression.  Second, overexpression of the cofactor SRC-1 in a human breast cancer cell line

(MCF-7 cells) results in an increase in the mitogenic response to estrogen (131).  Thus, the

sensitivity of a cell to a specific level of hormone may be determined, at least in part, by the

availability of specific cofactors.

There are two categories of nuclear receptor cofactors in general: corepressors and

coactivators (127, 132).  In the absence of thyroid hormone, TRs are able to repress basal

transcription via recruitment of the corepressors SMRT or NCoR (133, 134).  In contrast, in the

presence of thyroid hormone, TRs release their corepressor and recruit a coactivator complex that

includes SRC-1 (134, 135).  This appears to account for the observation that TR knock-out mouse

models have a relatively mild phenotype compared to animals rendered hypothyroid using

goitrogens or surgical thyroidectomy (62, 136-138).  Specifically, because the TR appears to be a

constitutive repressor, associating with a co-repressor in the unliganded state and recruiting a co-

activator only after thyroid hormone binding, the unliganded TR would be predicted to be more

damaging to brain development than the loss of the receptor entirely.  This hypothesis was

confirmed by Hashimoto et al. (139) who generated a TRβ1 knock-in mutant mouse containing a
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TRβ1 unable to bind thyroid hormone.  These homozygous mutant mice exhibited severe

neurological deficits that resembled hypothyroidism in wild-type mice.

Taken together, these data indicate that thyroid hormone action on gene expression - and on

specific developmental events - are likely to be highly pleiotropic.  That is, the effects of thyroid

hormone on an individual gene will be spatially and temporally specific, and studies designed to

identify end points of thyroid toxicity during development must consider this specificity.

Developmental processes influenced by thyroid hormone.  Thyroid hormone is known to

affect a number of specific developmental processes, including neuronal proliferation,

differentiation, migration and synaptogenesis (6, 8, 140, 9, 10).  Much of this work has focused on

the postnatal rat.  For example, Koibuchi and Chin (8) provide a very clear argument for studying

thyroid hormone action on cerebellar development, which is almost entirely postnatally derived in

the rodent (141, 142).  However, it is essential that generalizations not be made about thyroid

hormone action on specific neurodevelopmental events.  For example, it is clear that thyroid

hormones affect proliferation of cerebellar granule cells.  This was first shown by Nicholson and

Altman (45) using 3H-thymidine labeling, but has been shown also by labeling with proliferating

cell nuclear antigen mRNA (A. Croci, unpublished).  In contrast, our lab has not found that thyroid

hormone affects proliferation of cortical neurons on G16, using BrdU labeling (E.A. Iannacone,

unpublished) or PCNA (A. Croci, unpublished).  This single example clearly indicates that global

statements about thyroid hormone action on brain development should be avoided.

Because there is no a priori reason to predict that specific developmental processes are

affected by thyroid hormone in the early fetal cortex, we recently investigated thyroid hormone

action before the onset of fetal thyroid function using a broad empirical approach (47).  We used a

technique known as mRNA differential display as a way of identifying thyroid hormone-responsive

genes in the early fetal cortex, which could then guide us in subsequent studies to identify thyroid

hormone-regulated developmental processes.  Our underlying rationale was that the lack of
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information concerning molecular mechanism(s) of thyroid hormone action on fetal brain

development has two important consequences.  First, we have little appreciation for the molecular

events or developmental processes by which thyroid hormone produces the effects observed in

humans and animals briefly discussed above.  Second, we have no direct measures of thyroid

hormone action in fetal brain.  Therefore, we cannot directly test the hypothesis that specific

chemicals can interfere with thyroid hormone action.  Rather, we are forced to attempt to interpret

indirect measures of thyroid toxicity, such as circulating levels of thyroid hormones and thyroid

histopathology.

We focused on the embryonic day 16 (E16) fetus because fetal thyroid function does not

begin until E17 (126); thus, the identified genes would be regulated solely by maternal thyroid

hormone.  In addition, E16 is the time when most of the neurons of the cerebral cortex are

generated and begin to differentiate (143).  Our paradigm for thyroid hormone manipulation was

also novel among studies designed to identify thyroid hormone-responsive genes.  Specifically, we

surgically thyroidectomized female rats two weeks before they were mated to allow thyroid

hormones to decline before pregnancy.  Next, on E15, we administered two half-doses of T4 (12.5

µg/kg each) so that the concentration of thyroid hormone in the dam’s blood would not be

supraphysiological.  We reasoned that this combination of a physiological dose of T4 and an acute

injection paradigm would allow us to identify genes directly responsive to thyroid hormone and

would be physiologically relevant.

We identified a number of genes expressed in the fetal brain that appear to be responsive to

maternal thyroid hormone.  Two of these genes, encoding neuroendocrine-specific protein (NSP)

(144, 145) and Oct-1 (146-148), exhibited complementary patterns of responses to thyroid

hormone.  Interestingly, both Oct-1 mRNA and NSP-A mRNA are expressed exclusively in the

ventricular zone of the E16 cortex (149, 47).  However, Oct-1 mRNA is elevated by T4 injection,

whereas NSP-A mRNA is suppressed by thyroid hormone.  Oct-1 is a member of the POU-

domain family of transcription factors (146) that is implicated in the control of neuronal
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proliferation.  NSP-A is a neural-specific protein associated with endoplasmic reticulum that may

be involved in the acquisition of neuronal polarization and differentiation (150, 145).  These

experiments demonstrated that thyroid hormone of maternal origin can affect gene expression in the

fetus, and they provide “biomarkers” of thyroid hormone action in the fetal brain.  In addition,

because we found that NSP-A and Oct-1 retain their sensitivity to thyroid hormone in adulthood,

our results suggest that the concept of “critical windows” of thyroid hormone action apply to

specific developmental events, but probably not to thyroid hormone sensitivity per se.

From this perspective, it is easy to imagine that thyroid hormone plays an important role in

developmental processes such as neuronal proliferation that occur in different brain areas at

different times (143).  Therefore, the temporal “window” of thyroid hormone sensitivity will

depend on the developmental period over which a particular process occurs, and this will differ for

different brain areas.  For example, in humans, acute disruption of thyroid hormone action

selectively during the first trimester might affect assembly of the pool of neurons and glia that will

go on to form the adult cortex.  However, cerebellar granule cells do not arise until the third

trimester, transient exposure to a thyroid toxicant during the first trimester may not affect the

cerebellum..

VI. TWO EXAMPLES OF THYROID TOXICITY AND THE INTERPRETATION OF

THEIR EFFECTS

A broad range of chemicals is known to affect the thyroid system at different points of

regulation (27).  For example, some chemicals selectively interfere with thyroid hormone synthesis,

where others may selectively interfere with metabolic clearance, serum transport, cellular uptake,

hormone action, or combinations of these processes.  For example, perchlorate (ClO4) is an anion

that competes for iodide uptake into the thyroid gland via the sodium/iodide symporter (NIS) (151,

152).  Because ClO4 blocks iodide uptake, it reduces thyroid hormone synthesis and circulating

levels of thyroid hormones.  Therefore, perchlorate is expected to produce deleterious effects on an

organism solely by reducing thyroid hormone synthesis and release.  In contrast, polychlorinated
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biphenyls (PCBs) appear to affect the thyroid system at several levels (153).  Specifically, PCBs

enhance liver metabolism of thyroid hormone (154-156), increasing biliary excretion (157, 158).

They interfere with T4 binding to serum proteins (159-162), which may also reduce circulating

levels of thyroid hormones.  And, they may affect cellular uptake and/or receptor binding (163-

165).  Therefore, changes in circulating levels of thyroid hormone may not be the most sensitive

measures of PCB actions on thyroid toxicity.  The discussion below is focused on these two

examples of thyroid toxicity, perchlorate and PCBs, illustrating the difficulties in interpreting these

studies within a risk assessment paradigm, and highlighting the need for the development of valid

end points of thyroid toxicity.

Perchlorate. Ammonium perchlorate is the principal oxidant for solid propellants in the

defense industry (166, 167).  Perchlorate contamination of ground water across the United States

has recently become apparent (168), and therefore, it is important to determine the level of

perchlorate in drinking water that produces an adverse effect.  To this end, Siglin et al. (169)

performed a 90-day study in rats of ammonium perchlorate on various measures, including body

weight, hematology, clinical chemistry, thyroid hormones and thyroid histopathology.  Dose groups

included a control, and 5 levels of perchlorate:  0.01, 0.05, 0.20, 1.00, and 10.0 mg/kg/day.  Body

weight, hematology and clinical chemistry all were unaffected by perchlorate.  In contrast, total T4,

total T3, and TSH all were affected in males and females, but the dose at which they first exhibited

an effect differed.  Specifically, in males treated for 90 days, total T4 and total T3 were reduced in all

perchlorate-treated groups.  However, serum TSH was significantly elevated by only 0.20

mg/kg/day and above.  Thirty days after treatment was suspended, circulating TSH and total T3 was

not different from controls, although circulating T4 remained somewhat reduced.  Likewise in

female rats treated for 90 days, circulating levels of T4 and T3 were significantly reduced by all

doses of perchlorate, whereas TSH was elevated only in animals treated with the highest dose of

perchlorate (10 mg/kg/day).  Thirty days after treatment was suspended, circulating T4 and T3 were

not different among the treatment groups, while serum TSH was elevated at all doses examined.
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Interestingly, the mean absolute thyroid weight was affected only in the high dose groups even

when TSH levels were significantly elevated for 90 days.

The authors of this study reasonably consider that the results failed to establish a definitive

NOAEL.  Body weight was not affected by perchlorate treatment, nor were the clinical measures of

hematology or chemistry.  Thyroid hormones and TSH were the only measures affected by

perchlorate, and they were not uniformly linked to indices of hyperplasia in the thyroid gland.

However, the authors also considered setting the NOAEL at the 1.0 mg/kg/day dose because there

were no observed effects on the thyroid gland below this dose.  They argue that the selection of 1.0

mg/kg/day as the NOAEL requires that the hormonal changes at AP dosage levels of 1.0 mg/kg/day

and lower not be considered adverse effects per se.  Thus, despite the observation that thyroid

hyperplasia was not reported at any dosage level for perchlorate, the authors proposed setting the

NOAEL on the basis of any observed effect on the thyroid gland.

Considering the information provided in this review, it seems reasonable to propose that, in

the absence of any other direct measure of thyroid hormone action, TSH must be used as the single

point estimate of thyroid hormone effects.  The reasoning for this statement is as follows.  First,

thyroid hormone is known to regulate circulating TSH directly; thus, changes in circulating levels of

TSH can be viewed as a direct action of thyroid hormone.  Second, it is clear that, for humans,

clinical manifestations of hypothyroidism and hyperthyroidism are not sufficient to diagnose

thyroid dysfunction.  Rather, it is essential to measure circulating levels of T3, T4, and TSH.

Moreover, TSH is used as an important biomarker in the therapeutic use of T4 in hypothyroidism

(170).  Third, in the case of Siglin et al. (169), T3 and T4 levels remained significantly reduced

despite elevated TSH levels.  Thus, in the absence of any other direct measure of thyroid hormone

action, one must assume that all thyroid hormone-responsive genes in the body are affected (either

up-regulated or down-regulated) in a manner analogous to TSH.

Although it is arguable that recovery of normal hormone levels and thyroid weights from 90

days of perchlorate represents a return to a normal state in an adult animal, this argument cannot be
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sustained for a developing animal.  Thus, if similar results were obtained in dams, or in pups, one

must follow the same line of reasoning except that the thyroid hormone-responsive genes affected

by the decline in thyroid hormone are now developmentally regulated.  In a developmental context, a

period of catch-up or compensation cannot be considered evidence for the return of a normal state.

For example, it is clear that experimental animals made hypothyroid during development are

hypomyelinated as adults (171-174).  However, thyroid hormone effects on the expression of

myelin basic protein are transient, reaching a peak on postnatal day 15 in the rat and recovering by

postnatal day 30 (37).  However, despite the recovery in gene expression, the animals remain

hypomyelinated, and exhibit behavioral change characteristic of hypomyelination.  Likewise in

humans, children with congenital hypothyroidism that exhibit hypomyelination early appear to

recover with time, though behavioral characteristics of hypomyelination remain (96).  Therefore,

within a toxicological framework, fetal end points must be matched to the timing of exposure, and

recovery over time after exposure cannot be assumed to be a return to a normal state.

PCBs. Polychlorinated biphenyls are a class of industrial compounds consisting of paired

phenyl rings with various degrees of chlorination (175).  Before their production was banned in the

1970s, over a billion kilograms of PCBs were produced (176) and they are now ubiquitous,

persistent environmental contaminants that are routinely found in samples of human and animal

tissues (177, 175).  PCB mixtures or individual congeners, to varying degrees, can reduce

circulating levels of thyroid hormones in animals (154, 178-182).  The observation that PCBs are

found in human milk is particularly concerning.  Concentrations of individual congeners reported

for milk samples taken from women exposed to background PCB levels and actively breast-feeding

their infant range from 38.3 ng/g of lipid (183) to 395 ng/g of lipid (184).  These values correspond

to approximately 1.28 µg/ml of milk (3.52 µM) to 13.2 µg/ml of milk (36.3 µM) (185).  Thus, the

potential magnitude of PCB exposure to infants through breast milk and other sources justifies

concern about potential effects on development.
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PCBs are known to be developmental neurotoxicants at environmentally relevant

concentrations (186-190).  The most commonly noted neurological abnormalities associated with

low-levels of PCB contamination in humans are hypoactivity and impaired learning (177).  Because

the symptoms of PCB exposure can overlap with those of thyroid dysfunction, several investigators

have speculated that the neurological consequences of incidental exposure to PCBs are caused by

disruption of the thyroid axis (191, 192).  For example, Osius et al. (193) recently studied 7 to 10

year-old school children in three German municipalities, and found that serum concentrations of

individual PCB congeners were associated with circulating TSH.  In particular, they found a

significant positive correlation between the concentration of the mono-ortho congener PCB 118 and

TSH.  Moreover, they found a significant negative correlation between several PCB congeners and

free T3.  There was no correlation between circulating levels of PCBs and T4.  In contrast,

Koopman-Esseboom et al. (194) measured dioxins and PCBs in human cord blood and breast milk

and found that PCB exposure, estimated by toxic equivalents (TEQ), were negatively correlated with

circulating T4 in infants.  It is important to recognize that the differences in circulating levels of

thyroid hormones associated with PCBs are still within the normal range.  Therefore, there is no

evidence for overt hypothyroidism resulting from background exposure to PCBs.  However, this

observation alone does not necessarily mean that there are no adverse consequences of these

associations (see below). Specifically, the prediction that PCBs effectively produce neurological

deficits by producing hypothyroidism may be wrong, but PCBs may still interfere with thyroid

hormone action.  The structure of some PCB congeners may resemble that of thyroid hormone

enough to interact with the thyroid hormone receptor (TR) (195), acting as agonists, antagonists, or

mixed agonists (196).  

Because an effect on circulating levels of thyroid hormone may not accurately reflect an

effect on thyroid hormone action, we recently tested the hypothesis that PCBs interfere with thyroid

hormone action in the developing rodent brain.  We initially evaluated the effect of PCB exposure

(Aroclor 1254) on circulating levels of thyroid hormone and on the expression of thyroid hormone-

responsive genes in the developing brain (197).  We found that A1254 reduces circulating levels of
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T4 to below the detection limit for the radioimmunoassay, but the thyroid hormone-responsive

genes RC3/Neurogranin and myelin basic protein (MBP) were up-regulated as if T4 levels were

increased.  Two elements of our results were consistent with a thyroid hormone-like effect of

A1254.  First, RC3/Neurogranin mRNA was elevated only in those regions of the developing brain

in which others have shown it to be thyroid hormone-responsive (122).  In addition, single-cell

levels of RC3/Neurogranin mRNA were increased, suggesting a transcriptional mechanism (197).

We pursued this in the fetal brain next in the fetal brain.  We found that A1254 had no effect on

circulating levels of thyroid hormones in the dam, but increased RC3/Neurogranin mRNA in the

fetal brain (K. Gauger, C. Herzig, unpublished).

These findings demonstrate that PCBs can exert effects on thyroid hormone-responsive

gene expression in the developing brain independent of effects on circulating levels of thyroid

hormone.  However, these studies do not remedy the overall problem that changes in gene

expression are not likely to be considered to be an adverse effect.  Therefore, it is essential to

identify valid biomarkers of thyroid hormone action that can be employed in toxicological studies.

For example, thyroid hormone affects apoptosis of cerebellar granule cells around postnatal day 8

in the rat (198), perhaps offering a valid toxicological end point.

VII.  CONCLUSIONS

Information about the clinical effects of altered thyroid hormone levels clearly indicate that

very small but persistent changes can produce adverse effects in adults, and can produce permanent

changes in brain development.  Considering these observations alone, the present logic applied to

thyroid toxicity data sets should be reevaluated.  Minimally, TSH should be considered a primary

target of thyroid hormone action and a surrogate marker of all other thyroid hormone-responsive

genes throughout the body.  This is especially important in the developing brain.  It must be stated,

however, that studies focused on understanding the role of thyroid hormone in brain development

do not offer a large number of potential end points of thyroid toxicity.  It is likely that many, very
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specific, developmental processes that all can agree represent an adverse effect can be identified to

remedy this problem.

Table 1.  A partial list of genes known to be thyroid hormone-responsive
in various tissues at different developmental stages.

Tissue Gene Response to
thyroid

hormone

Ref

Neonatal
Brain

TRβ1 Increase (113)

RC3/Neurogranin Increase (120, 121, 199,
200)

TRH Decrease (201, 22, 24)

Myelin Basic Protein Increase (173, 202)

Purkinje cell Protein-2 Increase (203)

Type II 5’-Deiodinase Decrease (11)

Fetal Brain
NSP/s-Rex Decrease (204, 205)

Oct-1 Increase (204, 205)

Pituitary
Growth Hormone Increase (206)

Beta-Thrytropin decrease (207)

Heart
Alpha-Myosin Heavy

Chain
Decrease (208)

SERCA2 Increase (209)

Skeletal
Muscle

Alpha-Myosin Heavy
Chain

Decrease (208)

Liver
Malic Enzyme Increase (210, 211)

Testes
Androgen Receptor Increase (212)

Ovary
Inhibin Decrease (213)
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FIGURE LEGEND

Figure 1. The Hypothalamic-Pituitary-Thyroid Axis.  Numbers in filled diamonds refer to
the legend below that provide descriptions of the specific level of the thyroid
system.

1. Neurons whose cell bodies reside in the hypothalamic paraventricular nucleus (PVN)
synthesize the tripeptide Thyrotropin-Releasing Hormone (TRH) (118, 24).  Although
TRH-containing neurons are widely distributed throughout the brain (214, 215), TRH
neurons in the PVN project uniformly to the median eminence (216, 217), a neurohemal
organ connected to the anterior pituitary gland by the hypothalamic-pituitary-portal
vessels (74), and are the only TRH neurons to regulate the pituitary-thyroid axis (218,
26).

2. TRH is delivered by the pituitary-portal vasculature to the anterior pituitary gland to
stimulate the synthesis and release of Thyroid Stimulating Hormone (TSH) or
“Thyrotropin” (219).  TRH selectively stimulates the synthesis of the TSH beta subunit
(219).  However, TRH also affects the post-translational glycosylation of TSH which
affects its biological activity (220-225).

3. Pituitary TSH is one of three glycoprotein hormones of the pituitary gland and is
composed of an alpha and a beta subunit (226).  All three pituitary glycoproteins
(Luteinizing Hormone, LH; Follicle Stimulating Hormone, FSH; and TSH) share the same
alpha subunit (227).  Pituitary TSH binds to receptors on the surface of thyroid follicle
cells stimulating adenylate cyclase (15, 17).  The effect of increased cAMP is to increase
the uptake of iodide into thyroid cells, iodination of tyrosyl residues on TG by
thyroperoxidase, synthesis and oxidation of thyroglobulin (TG), TG uptake from thyroid
colloid and production of the iodothyronines T4 and T3.  T4 is by far the major product
released from the thyroid gland (15).

4. Thyroid hormones are carried in the blood by specific proteins.  In humans, about 75% of
T4 is bound to thyroxine-binding globulin (TBG), 15% is bound to transthyretin (TTR)
and the remainder is bound to albumin (228).  TBG, the least abundant but most avid T4

binder, is a member of a class of proteins that includes Cortisol Binding Protein and is
cleaved by serine proteases in serum (229).  These enzymes are secreted into blood during
inflammatory responses and, in the case of CBP, can induce the release of cortisol at the
site of inflammation.  The physiological significance of this observation is presently
unclear for TBG (228).

5. Thyroid hormones (T4 and T3) exert a negative feedback effect on the release of pituitary
TSH (230, 21, 19) and on the activity of hypothalamic TRH neurons (22, 231, 24).
Although it is clear that thyroid hormone regulates the expression of TSH (232-234) and
TRH (22, 118, 24, 117) in a negative feedback manner, it is also clear that the functional
characteristics of negative feedback must include more than simply the regulation of the
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gene encoding the secreted protein/peptide.  In addition, fasting suppresses the activity of
TRH neurons by a neural mechanism that may involve leptin (235, 236).  This fasting-
induced suppression of TRH neurons results in the reduction of circulating levels of
thyroid hormone.  Because circulating levels of T4 and of T3 fluctuate considerably within
an individual, and because the radioimmunoassays for T4 and for T3 are associated with a
fairly high intra-assay coefficient of variation, TSH measurements are considered to be
diagnostic of thyroid dysfunction (230, 170, 19).

6. T4 and T3 are actively transported into target tissues (237-244, 111).  T4 can be converted
to T3 by the action of outer-ring deiodinases (ORD, Type I and Type II) (245).
Peripheral conversion of T4 to T3 by these ORDs accounts for nearly 80% of the T3

found in the circulation (230).

7. Thyroid hormones are cleared from the blood in the liver following glucuronidation by
UDP-glucuronosyl transferase (155).  These modified thyroid hormones are then
eliminated through the bile.

8. T4 and/or T3 are actively concentrated in target cells about 10-fold over that of the
circulation, although this is tissue-dependent.  The receptors for T3 (TRs) are nuclear
proteins that bind to DNA and regulate transcription (101-103, 246, 112).  There are two
genes that encode the TRs, c-erbA-alpha (TRα) and c-erbA-beta (TRβ).  Each of these
genes is differentially spliced, forming 3 separate TRs, TRα1, TRβ1, and TRβ2.  The
effects of thyroid hormone are quite tissue-, cell-, and developmental stage-specific and it
is believed that the relative abundance of the different TRs in a specific cell may
contribute to this selective action.
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