


Writing, speaking, & designing: Three skills for effective communication

Phoebe Traquair, 1890's

http://www.nls.uk/traquair/











baskin@umass.edu

| 1                          | A        | В          | С                        | D    | E                    | F          | G                     | Н    | 1                     | 1        | К                        | L          | М                    | N          | 0                    |
|----------------------------|----------|------------|--------------------------|------|----------------------|------------|-----------------------|------|-----------------------|----------|--------------------------|------------|----------------------|------------|----------------------|
| 1                          |          |            | fit_h.y                  |      |                      |            | fit_4h.y              |      | fit_6h.y              | fit_8h.x | fit_8h.y                 | der_h.x    | der_h.y              | der_2h.x   | der_2h.y d           |
| 2                          | 1        | 0          |                          |      | 0.00427176           |            | 0.00495103            | 0    |                       | 0        |                          | 0          |                      | 0          |                      |
| 3                          | 2        | 25         | 0.00500064               | 25   | 0.00498179           | 25         | 0.00501415            | 25   | 0.00461663            | 25       |                          | 25         | 7.63E-05             | 25         |                      |
| 4                          | 3        | 50         | 0.0061179                | 50   | 0.00530687           | 50         | 0.00512483            | 50   | 0.00485841            | 50       |                          | 50         | 3.01E-05             | 50         | 7.53E-06             |
| 5                          | 4        | 75         | 0.00609997               | 75   | 0.00542905           | 75         | 0.00528931            | 75   | 0.0051475             | 75       |                          | 75         | 3.86E-06             | 75         | 4.82E-06             |
| 6                          | 5        | 100        | 0.00564118               | 100  | 0.00548574           | 100        | 0.00551082            | 100  | 0.00548186            | 100      | 0.00525146               | 100        | -3.98E-06            | 100        | 4.88E-06             |
| 7                          | 6        | 125        | 0.0053292                | 125  | 0.00557196           | 125        | 0.00579022            | 125  | 0.00586021            | 125      | 0.00575399               | 125        | 5.61E-09             | 125        | 6.80E-06             |
| 8                          | 7        | 150        | 0.00542118               | 150  | 0.00574573           | 150        | 0.00612601            | 150  | 0.00628073            | 150      |                          | 150        | 7.83E-06             | 150        | 9.81E-06             |
| 9                          | 8        | 175        | 0.00581553               | 175  | 0.0060366            | 175        | 0.0065168             | 175  | 0.0067416             | 175      | 0.00685286               | 175        | 1.43E-05             | 175        | 1.33E-05             |
| 0                          | 9        | 200        | 0.00628009               | 200  | 0.00645131           | 200        | 0.00695909            | 200  | 0.00724113            | 200      | 0.00744529               | 200        | 1.88E-05             | 200        | 1.68E-05             |
| 1                          | 10       | 225        | 0.00677426               | 225  | 0.00698081           | 225        | 0.00744906            | 225  | 0.00777716            | 225      | 0.00806333               | 225        | 2.33E-05             | 225        | 2.00E-05             |
| 12                         | 11       | 250        | 0.00744556               | 250  | 0.00760756           | 250        | 0.00798331            | 250  | 0.00834793            | 250      | 0.00870525               | 250        | 2.81E-05             | 250        | 2.28E-05             |
| 13                         | 12       | 275        | 0.00833803               | 275  | 0.00830833           | 275        | 0.00855782            | 275  | 0.0089513             | 275      | 0.0093693                | 275        | 3.11E-05             | 275        | 2.50E-05             |
| .4                         | 13       | 300        | 0.00925856               | 300  | 0.00905887           | 300        | 0.00916915            | 300  | 0.00958536            | 300      | 0.01005369               | 300        | 3.10E-05             | 300        | 2.66E-05             |
| 15                         | 14       | 325        | 0.01000747               | 325  | 0.00983548           | 325        | 0.00981409            | 325  | 0.01024858            | 325      | 0.01075667               | 325        | 2.93E-05             | 325        | 2.77E-05             |
| 16                         | 15       | 350        | 0.01062253               | 350  | 0.01061621           | 350        | 0.01048927            | 350  | 0.01093797            | 350      |                          | 350        | 2.90E-05             | 350        | 2.83E-05             |
| 17                         | 16       | 375        | 0.01131313               | 375  | 0.0113824            | 375        | 0.01119295            | 375  | 0.01165139            | 375      | 0.01221122               | 375        | 3.06E-05             | 375        | 2.86E-05             |
| .8                         | 17       | 400        | 0.0121829                | 400  | 0.01211859           | 400        | 0.01192339            | 400  | 0.01238697            | 400      |                          | 400        | 3.17E-05             | 400        | 2.86E-05             |
| .9                         | 18       | 425        | 0.01310553               | 425  | 0.01281657           | 425        | 0.01267872            | 425  | 0.01314231            | 425      |                          | 425        | 3.04E-05             | 425        | 2.87E-05             |
| 20                         | 19       | 450        | 0.01389281               | 450  | 0.01347807           | 450        | 0.01345738            | 450  | 0.01391499            | 450      |                          | 450        | 2.68E-05             | 450        | 2.89E-05             |
| 21                         | 20       | 475        | 0.01446942               | 475  | 0.01411952           | 475        | 0.01425778            | 475  | 0.01470339            | 475      |                          | 475        | 2.30E-05             | 475        | 2.95E-05             |
| 22                         | 21       | 500        | 0.01486979               | 500  | 0.01477347           | 500        | 0.01507876            | 500  | 0.01550504            | 500      |                          | 500        | 2.11E-05             | 500        | 3.06E-05             |
| 23                         | 22       | 525        | 0.01518968               | 525  | 0.01548055           | 525        | 0.01591797            | 525  | 0.0163175             | 525      | 0.01683642               | 525        | 2.30E-05             | 525        | 3.21E-05             |
| 24                         | 23       | 550        | 0.01561976               | 550  | 0.01627848           | 550        | 0.01677339            | 550  | 0.01713854            | 550      |                          | 550        | 2.95E-05             | 550        | 3.39E-05             |
| 25                         | 24       | 575        |                          | 575  | 0.01719089           | 575        | 0.0176417             | 575  | 0.01796597            | 575      |                          | 575        | 3.92E-05             | 575        | 3.57E-05             |
| 26                         | 25       | 600        | 0.01764985               | 600  | 0.01821174           | 600        | 0.01852001            | 600  | 0.01879556            | 600      | 0.0192108                | 600        | 4.80E-05             | 600        | 3.71E-05             |
| 27                         | 26       | 625        | 0.01920338               | 625  | 0.01930556           | 625        | 0.01940391            | 625  | 0.01962673            | 625      | 0.02000037               | 625        | 5.22E-05             | 625        | 3.78E-05             |
| 28                         | 27       | 650        | 0.02078337               | 650  | 0.02041769           | 650        | 0.02028949            | 650  | 0.02045728            | 650      | 0.02078637               | 650        | 5.05E-05             | 650        | 3.76E-05             |
| 29                         | 28       | 675        |                          | 675  | 0.02148643           | 675        | 0.02117208            | 675  | 0.02128503            | 675      |                          | 675        | 4.39E-05             | 675        | 3.67E-05             |
| 80                         | 29       | 700        | 0.02316006               | 700  | 0.02246323           | 700        | 0.02204739            | 700  | 0.02210786            | 700      | 0.02234162               | 700        | 3.53E-05             | 700        | 3.52E-05             |
| 81                         | 30       | 725        | 0.02383885               | 725  | 0.02332708           | 725        | 0.02291178            | 725  | 0.02292371            | 725      | 0.02310791               | 725        | 2.77E-05             | 725        | 3.35E-05             |
| 32                         | 31       | 750        | 0.02430205               | 750  | 0.02408737           | 750        | 0.02376049            | 750  | 0.02373059            | 750      | 0.02386475               | 750        | 2.28E-05             | 750        | 3.20E-05             |
| 33                         | 32<br>33 | 775<br>800 |                          | 775  | 0.02478267           | 775<br>800 | 0.02459026            | 775  | 0.02452656            | 775      | 0.02461077<br>0.02534461 | 775        | 2.12E-05             | 775        | 3.08E-05<br>3.01E-05 |
| 84<br>85                   | 33       |            | 0.0250901                | 800  | 0.02546219           |            | 0.02539933            | 800  | 0.02530977            | 800      | 0.02534461               | 800<br>825 | 2.24E-05<br>2.68E-05 | 800        | 2.97E-05             |
| 36                         | 34       | 825<br>850 | 0.02554147<br>0.02622237 | 825  | 0.0261688 0.02692247 | 825<br>850 | 0.02618584 0.02694789 | 825  | 0.02607844 0.02683086 | 825      | 0.02606497               | 825        | 2.68E-05<br>3.36E-05 | 825<br>850 | 2.97E-05             |
| 87                         | 35       | 875        | 0.02622237               | 875  | 0.02692247           | 875        | 0.02694789            | 875  | 0.02665086            | 875      |                          | 875        | 3.98E-05             | 875        | 2.94E-05<br>2.89E-05 |
| 88                         | 30       | 900        | 0.02730346               | 900  | 0.0277152            | 900        | 0.02768566            | 900  | 0.02756541            | 900      | 0.02748025               | 900        | 4.05E-05             | 900        | 2.89E-05             |
| 89<br>89                   | 38       | 925        | 0.02990634               | 900  | 0.02927212           | 925        | 0.02908998            | 925  | 0.02828032            | 925      | 0.02878694               | 925        | 3.44E-05             | 925        | 2.67E-05             |
| 10                         | 39       | 950        | 0.03069042               | 950  | 0.02994964           | 950        | 0.02975863            | 950  | 0.02964652            | 950      | 0.02942172               | 950        | 2.50E-05             | 950        | 2.50E-05             |
| 1                          | 40       | 975        | 0.03107721               | 975  | 0.03052672           | 975        | 0.03040599            | 975  | 0.0302946             | 975      |                          | 975        | 1.66E-05             | 975        | 2.34E-05             |
| 12                         | 40       | 1000       | 0.03124175               | 1000 | 0.03101413           | 1000       | 0.03103302            | 1000 | 0.03091764            | 1000     |                          | 1000       | 1.15E-05             | 1000       | 2.21E-05             |
| 13                         | 42       | 1025       | 0.03128413               | 1025 | 0.03144439           | 1025       | 0.03163973            | 1025 | 0.03151439            | 1025     |                          | 1025       | 1.03E-05             | 1000       | 2.12E-05             |
| 14                         | 43       | 1050       | 0.03135926               | 1050 | 0.03186538           | 1050       | 0.03222587            | 1050 | 0.03208364            | 1050     |                          | 1020       | 1.38E-05             | 1050       | 2.09E-05             |
| 15                         | 44       | 1075       | 0.03172093               | 1075 | 0.03232065           | 1075       | 0.03279014            | 1075 | 0.03262427            | 1075     |                          | 1075       | 2.04E-05             | 1075       | 2.11E-05             |
| 16                         | 45       | 1100       | 0.0324665                | 1100 | 0.03283939           | 1100       | 0.03333016            | 1100 | 0.0331352             | 1100     |                          | 1100       | 2.60E-05             | 1100       | 2.15E-05             |
| 17                         | 46       | 1125       | 0.03334952               | 1125 | 0.03343046           | 1125       | 0.03384293            | 1125 | 0.03361544            | 1125     | 0.0332372                | 1125       | 2.75E-05             | 1125       | 2.17E-05             |
| 18                         | 47       | 1150       |                          | 1150 | 0.03407734           | 1150       | 0.0343245             | 1150 | 0.03406407            | 1150     |                          | 1150       | 2.64E-05             | 1150       | 2.16E-05             |
|                            | 48       |            | 0.03463005               |      | 0.03474986           |            | 0.03477098            | 1175 |                       | 44.00    | 0.03409919               | 1175       | 2.60E-05             | 1175       |                      |
| 19<br>50<br>51<br>52<br>53 | 49       | 1200       |                          |      | 0.03540899           |            | 0.03517805            | 1200 | 0.0348641             |          | 0.03448849               | 1200       | 2.66E-05             | 1200       | 1.93E-05             |
| 51                         | 50       |            | 0.03614514               |      | 0.03601261           |            | 0.03554197            | 1225 |                       |          | 0.03484925               | 1225       | 2.49E-05             | 1225       | 1.71E-05             |
| 52                         | 51       |            | 0.03687726               |      | 0.03652219           |            | 0.03585898            | 1250 |                       | 1250     | 0.03518098               | 1250       | 1.92E-05             | 1250       | 1.41E-05             |
| 53                         | 52       | 1275       | 0.03727731               | 1275 | 0.03690863           | 1275       | 0.03612687            | 1275 | 0.03581319            | 1275     | 0.03548329               | 1275       | 1.15E-05             | 1275       | 1.07E-05             |
| 54                         | 53       | 1300       | 0.03737348               |      | 0.03715171           | 1300       | 0.03634435            | 1300 | 0.03606015            |          | 0.03575585               | 1300       | 4.84E-06             | 1300       |                      |
| 55                         | 54       | 1325       | 0.03733185               | 1325 | 0.03724185           | 1325       | 0.0365117             | 1325 | 0.03627258            | 1325     | 0.03599842               | 1325       | 4.09E-07             | 1325       | 3.32E-06             |
| 6                          | 55       | 1350       | 0.03726762               | 1350 | 0.03718039           | 1350       | 0.03663041            | 1350 | 0.03645111            | 1350     | 0.03621086               | 1350       | -2.52E-06            | 1350       | 1.22E-08             |
| 57                         | 56       |            | 0.03722762               | 1375 | 0.0369841            |            | 0.03670386            | 1375 |                       |          | 0.03639313               | 1375       | -5.63E-06            | 1375       |                      |
| 58                         | 57       | 1400       | 0.03715083               | 1400 |                      |            | 0.03673697            | 1400 | 0.03670961            |          | 0.03654527               | 1400       | -1.07E-05            | 1400       |                      |
| 59                         | 58       | 1425       | 0.0368171                | 1425 | 0.03635285           |            | 0.03673544            | 1425 |                       |          | 0.03666746               | 1425       | -1.75E-05            | 1425       |                      |
| 50                         | 59       | 1450       |                          | 1450 |                      |            | 0.03670638            | 1450 | 0.0368441             | 1450     |                          | 1450       | -2.18E-05            | 1450       |                      |
| 51                         | 60       | 1475       | 0 03498489               | 1475 | 0 03577984           | 1475       | 0.03665736            | 1475 | 0.03686914            | 1475     | 0.03682314               | 1475       | -1 75E-05            | 1475       | -3 00E-06            |



### The Fragile Fiber1 Kinesin Contributes to Cortical Microtubule-Mediated Trafficking of Cell Wall Components<sup>1[OPEN]</sup>

Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. McClosky, Charles T. Anderson, Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, and Ram Dixit\*

Biology Department (C.Z., A.G., R.D.) and Department of Mechanical Engineering (R.O.), Washington University, St. Louis, Missouri 63130; Biology Department, University of Massachusetts, Amherst, Massachusetts 01003 (T.I.B.); Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802 (D.D.M., C.T.A.); Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823 (C.F., K.A.M.); and Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.B.)

#### ORCID ID: 0000-0001-7881-2859 (R.D.).

The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an *fra1-5* knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in *fra1-5* have an essentially unaltered composition and ultrastructure. A functional triple green fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and its abundance and motile density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent, indicating that FRA1 is not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pectin is greatly decreased in *fra1-5*, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our results, we propose that FRA1 contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules for secretion.

| 3/5 | 0.01119295 | 3/5 | 0.01165139 |
|-----|------------|-----|------------|
| 400 | 0.01192339 | 400 | 0.01238697 |
| 425 | 0.01267872 | 425 | 0.01314231 |
| 450 | 0.01345738 | 450 | 0.01391499 |
| 475 | 0.01425778 | 475 | 0.01470339 |
| 500 | 0.01507876 | 500 | 0.01550504 |
| 525 | 0.01591797 | 525 | 0.0163175  |
| 550 | 0.01677339 | 550 | 0.01713854 |
| 575 | 0.0176417  | 575 | 0.01796597 |
| 600 | 0.01852001 | 600 | 0.01879556 |
| 625 | 0.01940391 | 625 | 0.01962673 |
| 650 | 0.02028949 | 650 | 0.02045728 |
| 675 | 0.02117208 | 675 | 0.02128503 |

#### The Fragile Fiber1 Kinesin Contributes to Corti Microtubule-Mediated Trafficking of Cell Wall Components<sup>1[OPEN]</sup>

Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. McClosky, Charles T. Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, and Ram Dixit\*

Biology Department (C.Z., A.G., R.D.) and Department of Mechanical Engineering (R.O University, St. Louis, Missouri 63130; Biology Department, University of Massachusetts, Massachusetts 01003 (T.I.B.); Department of Biology and Center for Lignocellulose Struc Pennsylvania State University, University Park, Pennsylvania 16802 (D.D.M., C.T.A.); G Research Center, East Lansing, Michigan 48823 (C.F., K.A.M.); and Donald Danforth Pla Louis, Missouri 63132 (H.B.)

#### ORCID ID: 0000-0001-7881-2859 (R.D.).

The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. ( synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi app trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we i this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an *fra1*-5 knockon rate of the inflorescence stem is halved compared with the wild type along with the thickness of both priwalls. Nevertheless, cell walls in *fra1*-5 have an essentially unaltered composition and ultrastructure. fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and i density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pect *fra1*-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our result contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules

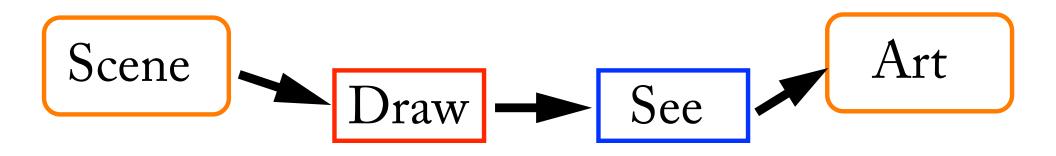


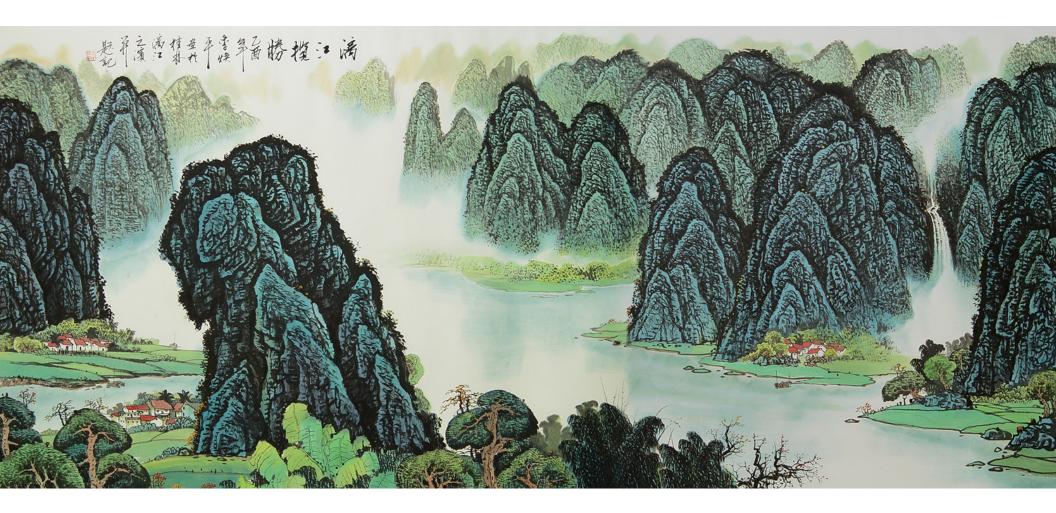
## (Experiment)(Writing) = Science

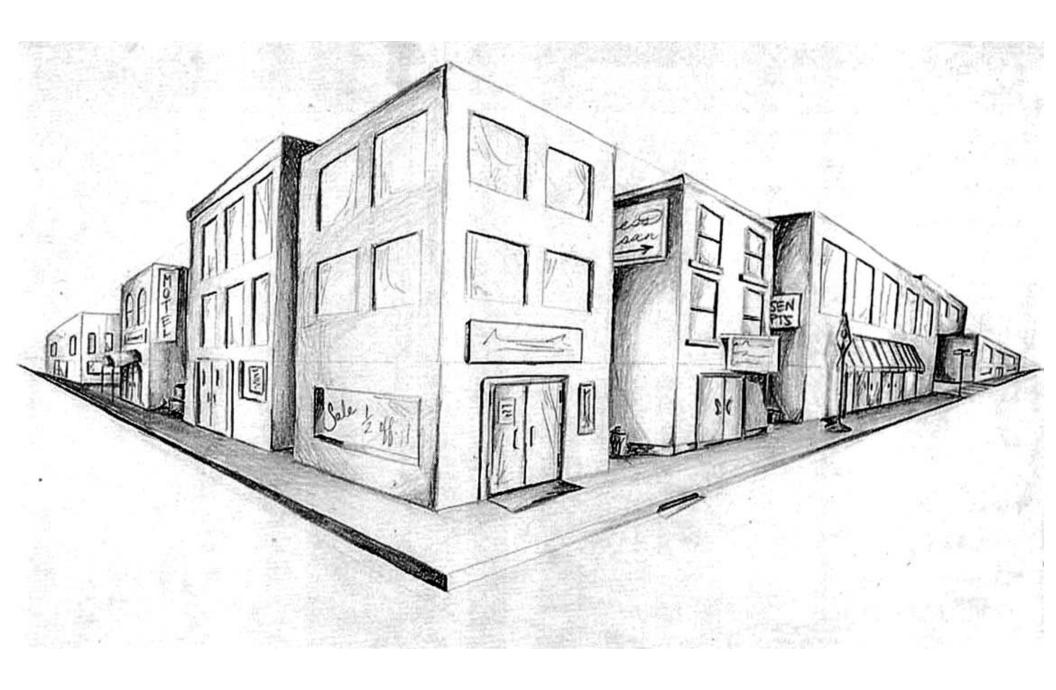
| 3/5 | 0.01119295 | 3/5 | 0.01165139 |  |
|-----|------------|-----|------------|--|
| 400 | 0.01192339 | 400 | 0.01238697 |  |
| 425 | 0.01267872 | 425 | 0.01314231 |  |
| 450 | 0.01345738 | 450 | 0.01391499 |  |
| 475 | 0.01425778 | 475 | 0.01470339 |  |
| 500 | 0.01507876 | 500 | 0.01550504 |  |
| 525 | 0.01591797 | 525 | 0.0163175  |  |
| 550 | 0.01677339 | 550 | 0.01713854 |  |
| 575 | 0.0176417  | 575 | 0.01796597 |  |
| 600 | 0.01852001 | 600 | 0.01879556 |  |
| 625 | 0.01940391 | 625 | 0.01962673 |  |
| 650 | 0.02028949 | 650 | 0.02045728 |  |
| 675 | 0.02117208 | 675 | 0.02128503 |  |

#### The Fragile Fiber1 Kinesin Contributes to Corti Microtubule-Mediated Trafficking of Cell Wall Components<sup>1[OPEN]</sup>

#### Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. McClosky, Charles T. Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, and Ram Dixit\*


Biology Department (C.Z., A.G., R.D.) and Department of Mechanical Engineering (R.O University, St. Louis, Missouri 63130; Biology Department, University of Massachusetts, Massachusetts 01003 (T.I.B.); Department of Biology and Center for Lignocellulose Struc Pennsylvania State University, University Park, Pennsylvania 16802 (D.D.M., C.T.A.); G Research Center, East Lansing, Michigan 48823 (C.F., K.A.M.); and Donald Danforth Pla Louis, Missouri 63132 (H.B.)

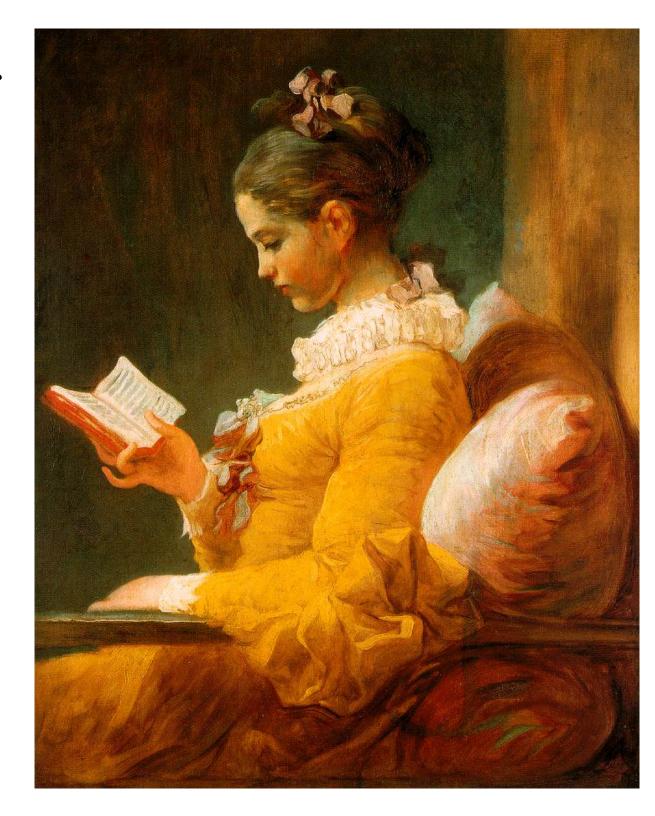

#### ORCID ID: 0000-0001-7881-2859 (R.D.).


The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. ( synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi app trafficking of vesides containing cell wall components is thought to depend on actin-myosin. Here, we i this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an *fra1*-5 knockor rate of the inflorescence stem is halved compared with the wild type along with the thickness of both pri walls. Nevertheless, cell walls in *fra1*-5 have an essentially unaltered composition and ultrastructure. . fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and if density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pect *fra1*-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our result contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules







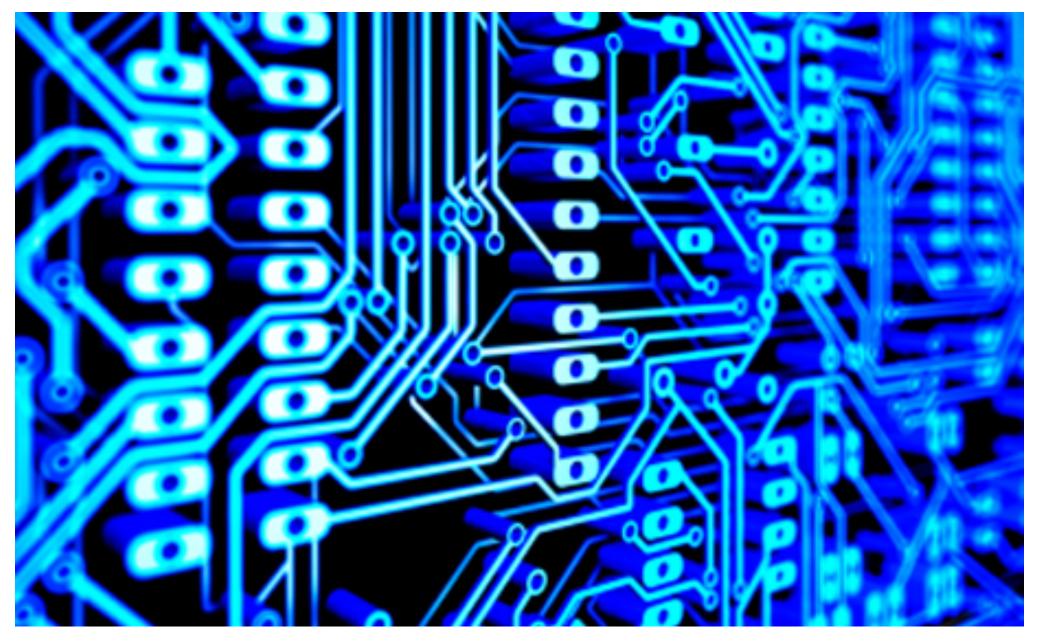







Mechanics of reading provide the bases for effective writing



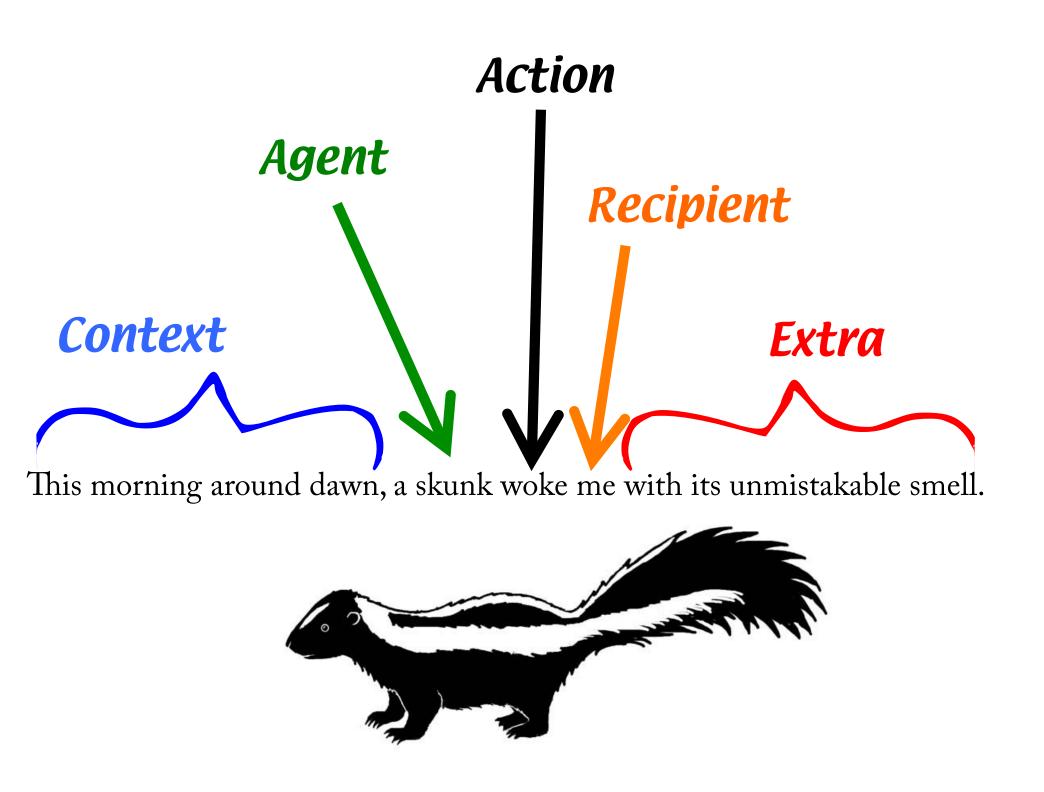



In engineering terms, tissue **\*** is an example of a residual 🏶. As such, putting the epidermis in VV has been shown to play an important role in enhancing the resistance of the stem to bending. Tissue is a stress integrated over (and acting upon) multiple cells, arising from large but finescale fluctuations of st that occur at the subcellular level, and involving compression of protoplasts and *W* in neighboring cell walls. At the level of a cell, tissue **\*** represents the net **\*** acting on that cell due to its neighbors; it disrupts the balance between cell wall *M* and protoplast pressure that would occur were the cell to be isolated.

It was found that ET was higher in loamy soil than in sandy soil, under sufficient N supply than under low-N stress, and in rain-rich years than in rain shortage years. The higher ET in sufficient N supply compared to low-N stress resulted from the higher plant biomass but not leaf stomatal conductance and transpiration rate. There was a significant effect of year × soil × N on GY and  $WP_{grain}$ . The highest  $WP_{grain}$  was achieved in 2011 due to the lowest ET. Too much rainfall during seedling and silking stage did not benefit biomass accumulation and grain development, and potentially reduced  $WP_{grain}$  in 2012 and 2013. Maize grown in loamy soil had higher GY and  $WP_{grain}$  than in sandy soil.



## Information flow




I was awoken this morning around dawn by the unmistakable smell of skunk. This morning around dawn, I was awoken by the unmistakable smell of skunk. I was awoken by the unmistakable smell of skunk this morning around dawn. This morning I was awoken by the unmistakable smell of skunk around dawn.

This morning around dawn, the unmistakable smell of skunk woke me.

This morning around dawn, a skunk woke me with its unmistakable smell.







- •Write English based on how English is read.
- •Writing tells the story of your experiments.
- •Stories involve agents and actions.
- Distinguish context from agents and action.Keep agent, action, recipient close together.



# Four guides to clear writing



### Gopen GD, Swan JA (1990) The science of scientific writing. *American Scientist* 78: 550 - 558. http://www.americanscientist.org/issues/pub/ the-science-of-scientific-writing

## Williams JM Style, Ten Lessons in Clarity and Grace.



## **1**. Express actions in verbs

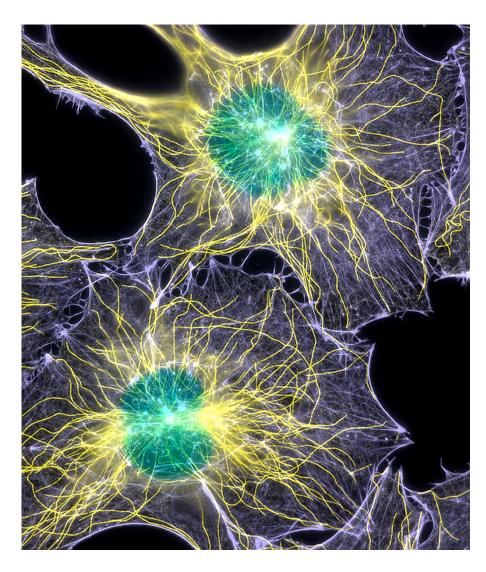



## **1**. Express actions in verbs

The dancer has a leap.

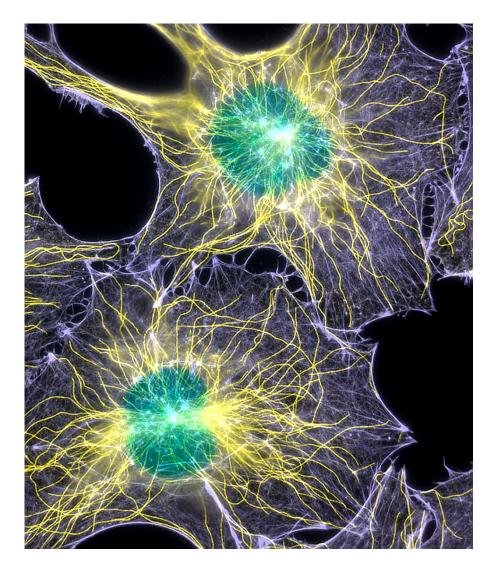
### The dancer leaps.

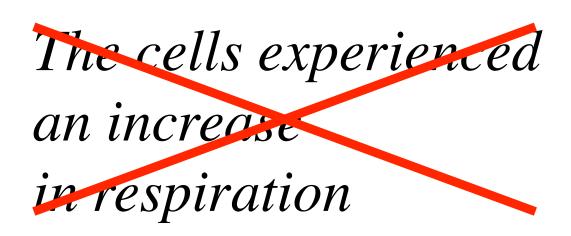




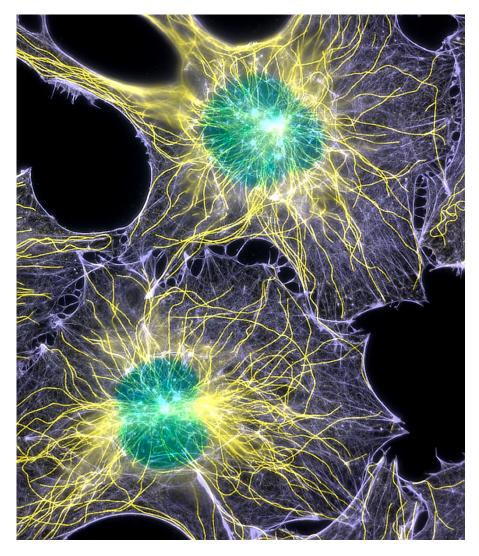



## The dancer leaps.





The cells experienced an increase in respiration

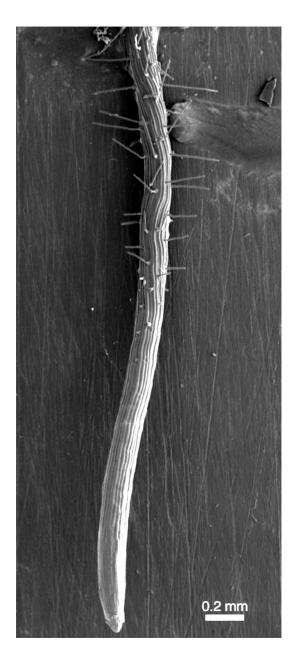



The cells experienced an increase in respiration

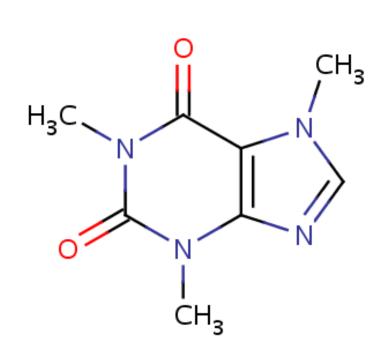
The cells respired more rapidly.






The cells respired more rapidly.




### 2. Use characters as grammatical subjects



# 2. Use agents as grammatical subjects







### Exposing wire to acid causes degradation.

subjectverbobjectExposing wire to acid causes degradation.recipient agentaction

subjectverbobjectExposing wire to acid causes degradation.recipient agentaction

Acid degrades wire.

subjectverbobjectExposing wire to acid causes degradation.recipient agentaction

subject verb object
Acid degrades wire.
agent action recipient

# What about "I" and "We"



equipment, and to Dr. G. E. R. Deacon and the captain and officers of R.R.S. *Discovery II* for their part in making the observations.

- <sup>1</sup> Young, F. B., Gerrard, H., and Jevons, W., Phil. Mag., 40, 149 (1920).
- <sup>2</sup> Longuet-Higgins, M. S., Mon. Not. Roy. Astro. Soc., Geophys. Supp., 5, 285 (1949).
- <sup>8</sup> Von Arx, W. S., Woods Hole Papers in Phys. Oceanog. Meteor., 11 (3) (1950).

<sup>4</sup>Ekman, V. W., Arkiv. Mat. Astron. Fysik. (Stockholm), 2 (11) (1905).

#### MOLECULAR STRUCTURE OF NUCLEIC ACIDS

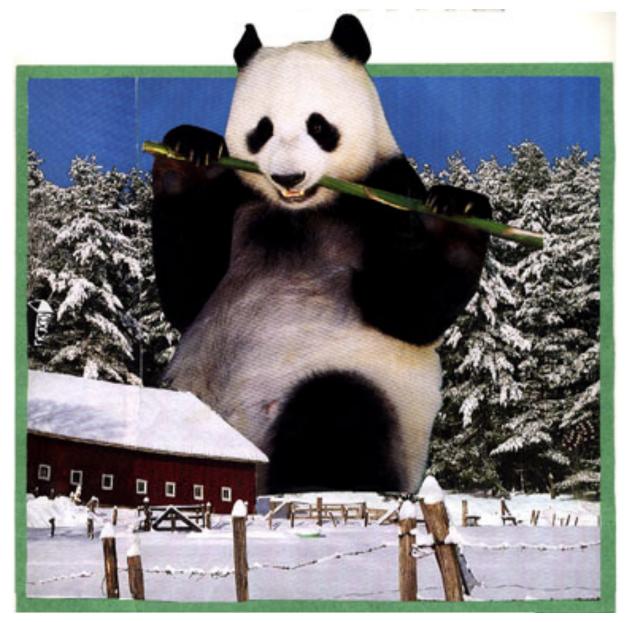
#### A Structure for Deoxyribose Nucleic Acid

WE wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This

> We wish to put forward a radically different structure for the salt of deoxyribose nucleic acid. This structure has two helical chains each coiled round the same axis (see diagram). We have made the usual chemical assumptions, namely, that each

# **3. The start of the grammatical sentence** is the topic

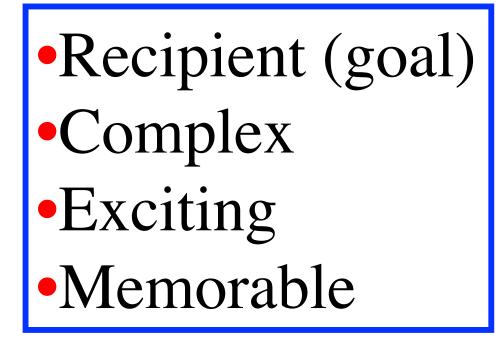





The topic is what the sentence is about

### What is a clear sentence about?

A doer (agent)
Straightforward
Short
Readily comprehended (linking back)


# 4. The end of the sentence is stressed



This morning around dawn, I was woken up by the pungent smell of a skunk. This morning around dawn, I was woken up by the pungent smell of a skunk.

I was woken up by the pungent smell of a skunk at two AM.

# What does a clear sentence stress?





### Character ---> Action. Topic ---> News.

Topic --> News. Topic --> News. Topic ---> News.

### NEWS ==> TOPIC ノノノ

The power to create and communicate a new message to fit a new experience is not a competence animals have in their natural states. Their genetic code limits the number and kind of messages that they can communicate. Information about distance, direction, source, and richness of pollen in flowers constitutes the only information that can be communicated by bees, for example. A limited repertoire of messages delivered in the same way, for generation after generation, is characteristic of animals of the same species, in all significant respects.

Animals are unable to create a new message to fit a new experience. Animal communication is limited by the genetic code, both in terms of the number and kind of messages. For example, bees can communicate information only about distance, direction, source, and richness of pollen in flowers. A given species delivers a limited repertoire of messages in the same way, generation after generation. Animals are unable to create a new message to fit a new experience. Animal communication is limited by the genetic code, both in terms of the number and kind of messages. For example, bees can communicate information only about distance, direction, source, and richness of pollen in flowers. A given species delivers a limited repertoire of messages in the same way, generation after generation.

The power to create and communicate a new message to fit a new experience is not a competence animals have in their natural states. Their genetic code limits the number and kind of messages that they can communicate. Information about distance, direction, source, and richness of pollen in flowers constitutes the only information that can be communicated by bees, for example. A limited repertoire of messages delivered in the same way, for generation after generation, is characteristic of animals of the same species, in all significant respects.

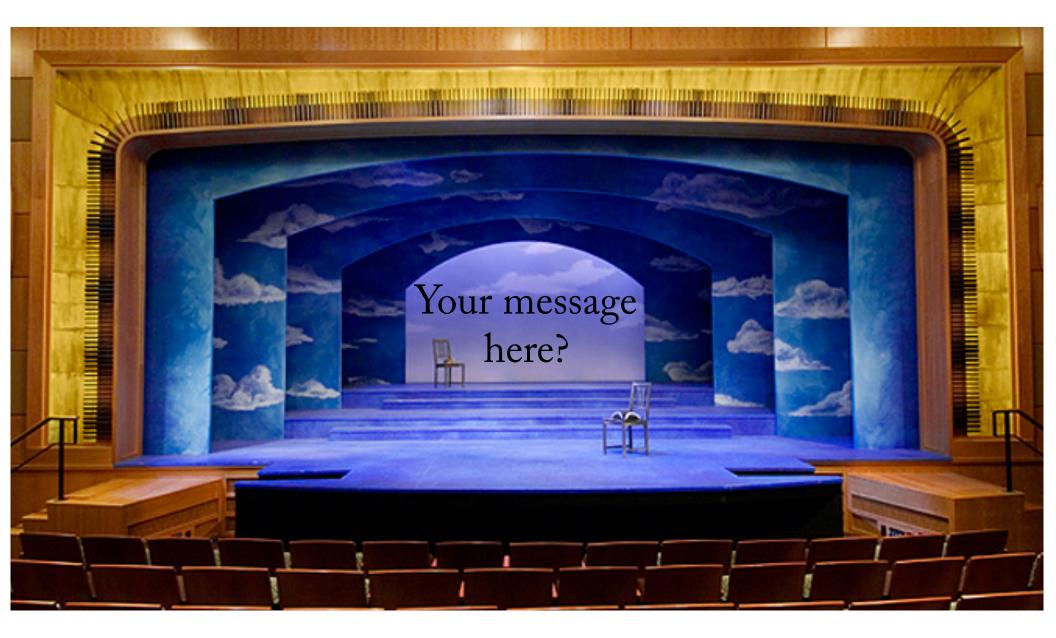
| Fixed    | Topic                      | Stress             |
|----------|----------------------------|--------------------|
| Variable | Short, simple,<br>familiar | New, long, complex |
| Variable | Character                  | Action             |
| Fixed    | Subject                    | Verb               |



- •Express the main action in verbs.
- •Use agents as grammatical subjects.
- •The grammatical sentence starts with
  - the topic.
- •The end of the sentence is what is stressed.



write write




### Read (English!) fiction











### • You are the show. Your slides are backdrop.



- You are the show.
- Face the audience, always.



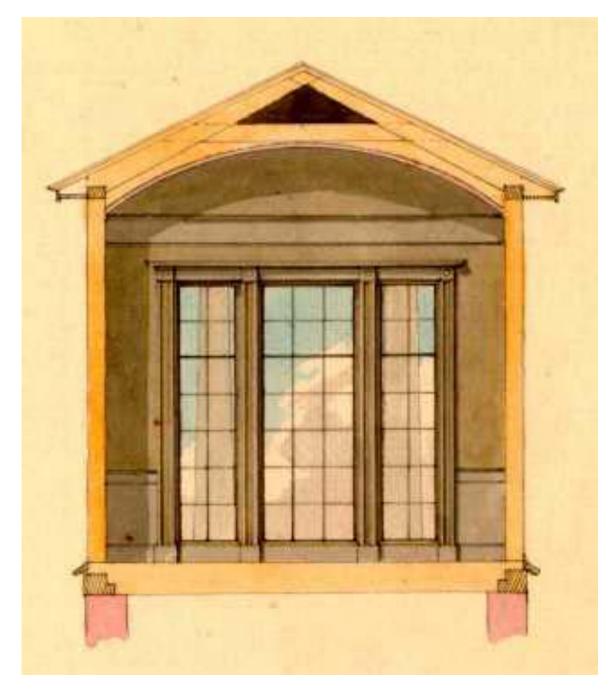
- You are the show.
- Face the audience, always.
- Point wth your up-stage hand.

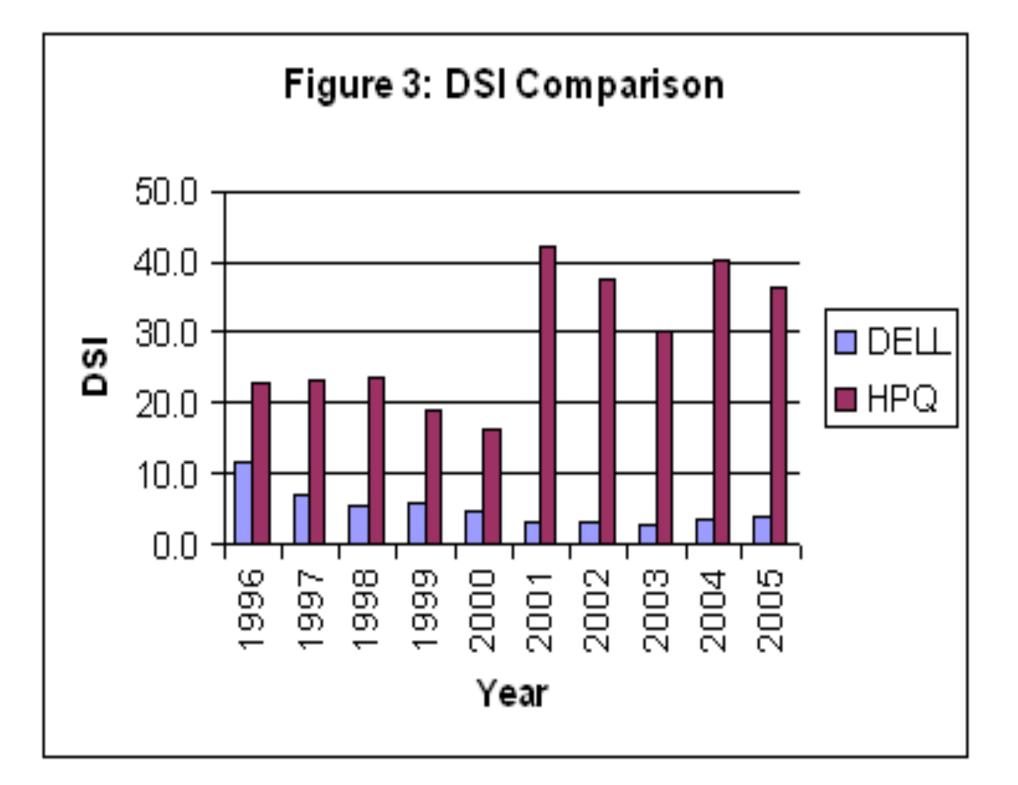


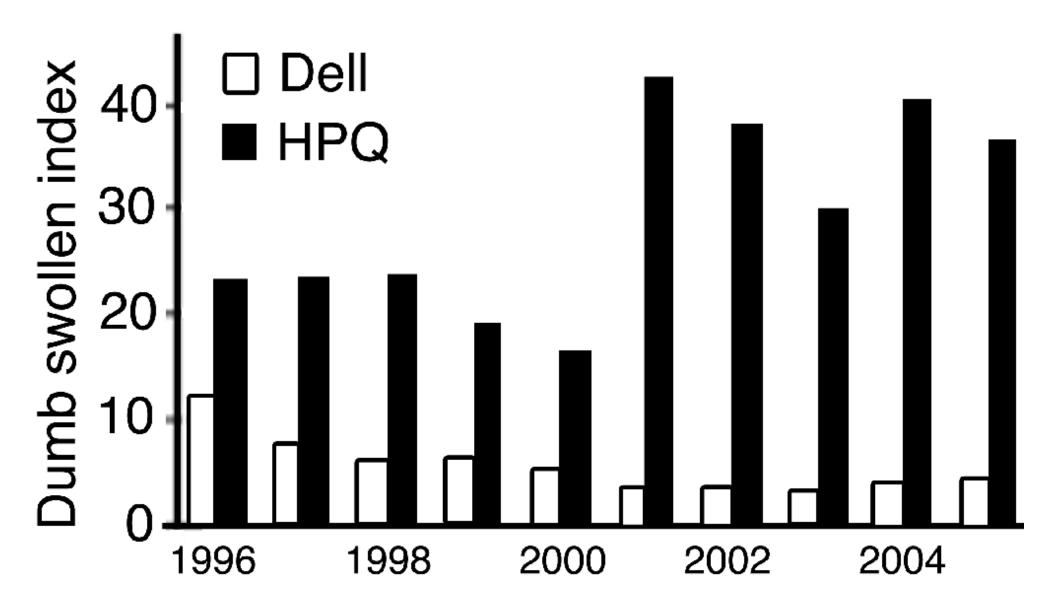
- You are the show.
- Face the audience, always.
- Point wth your up-stage hand.
- Mark begining, middle, and end.

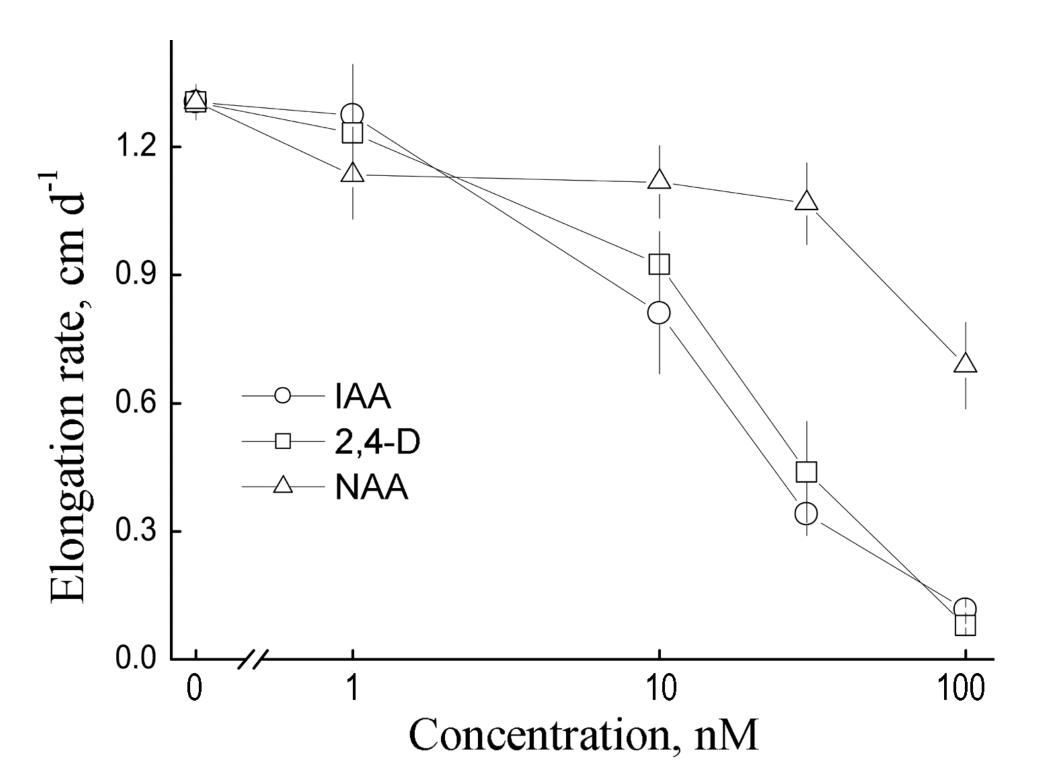


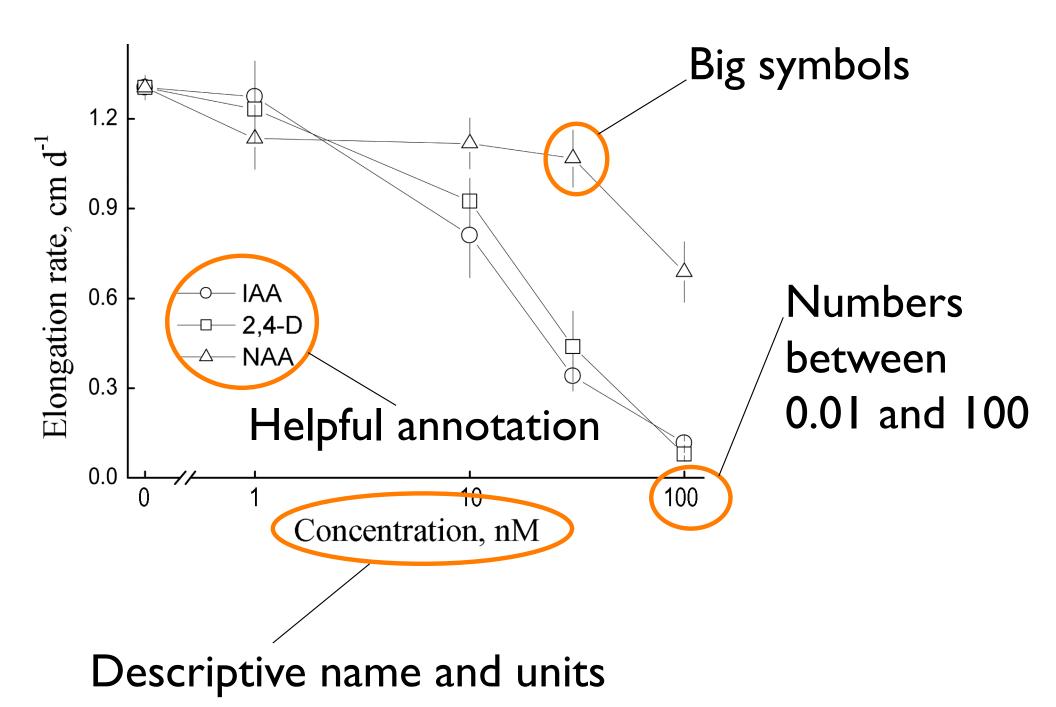
- You are the show.
- Face the audience, always.
- Point wth your up-stage hand.
- Mark begining, middle, and end.
- Project a positive vibe.

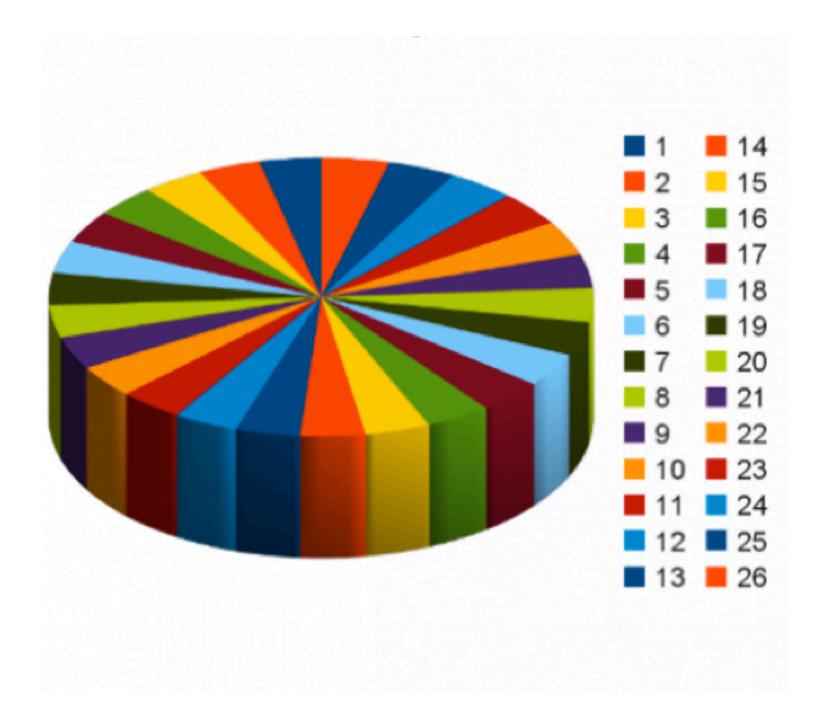


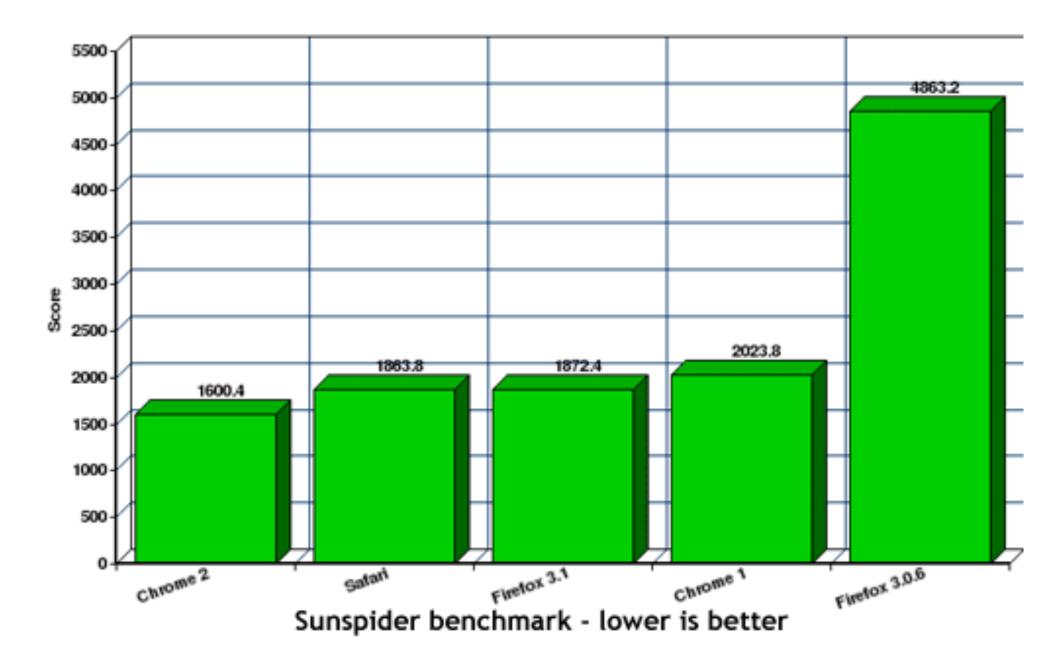



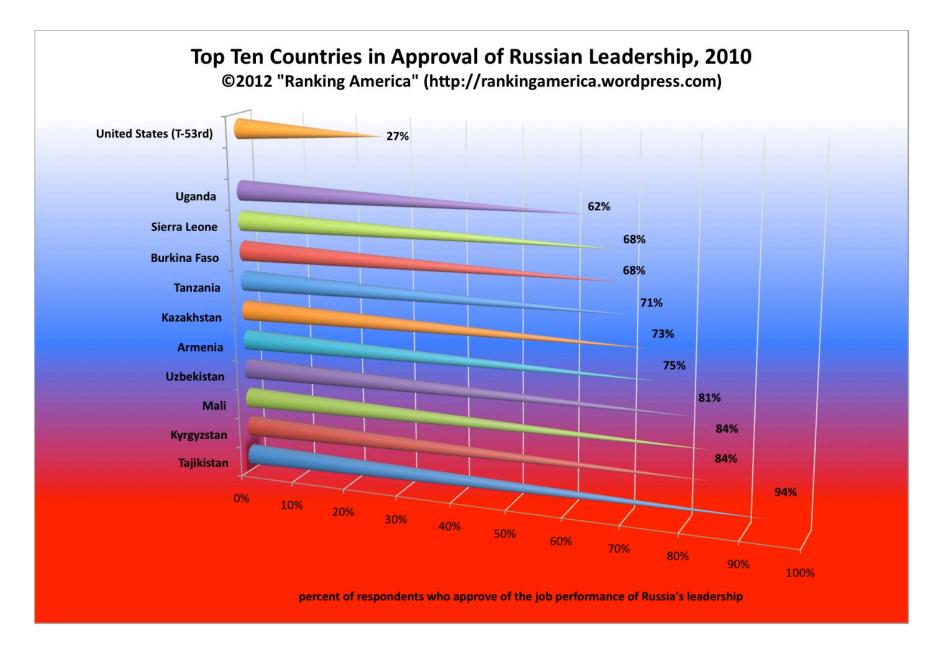


X1F-1560990 - (c) - Keith Morris





# Designing

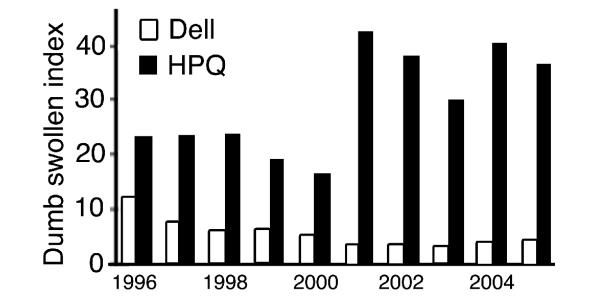




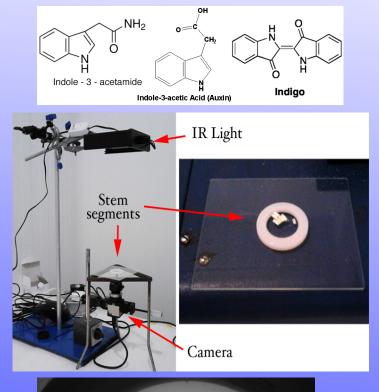


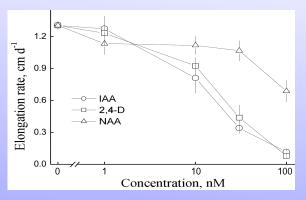



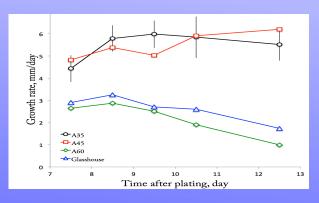


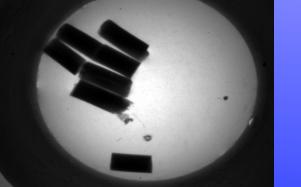


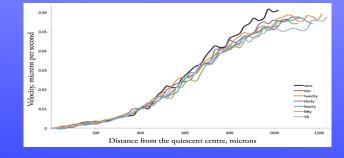

Data from Gallup http://www.gallup.com/poll/128210/Gallup-Global-Reports.aspx


This format with a title up here and data below wastes space.





http://www.hoylakejunction.com/friday-photo-busy-day-at-the-baths


#### LOOK AT ALL MY FAR OUT COOL DATA!













#### AMAZING STUFF

- This is the induction of coolness
   provided that the square root of sausage = 5
- Intensifaction of the mean
- Auxin reveled to smoke in tripicate or quintuplicate.

#### **BORING STUFF**

- Peanut butter falsiification
- Lotus blossum shipping humongous containers
- Clams vote without rhyme or reason
- · Lunch is a thing that makes the walrus scream

#### WACHSTUFF

- This is the induction of coolness
- provided that the square root of sausage = 5
- Intensifaction of the mean
- Auxin reveled to smoke in tripicate or quintuplicate.

#### MADE YOU LOOK

- Peanut butter falsiification
- · Lotus blossum shipping humongous containers
- Clams vote without rhyme or reason
- Lunch is a thing that makes the walrus scream

#### RHUBARB

- This is the induction of coolness provided that the square root of sausage = 5
- Intensifaction of the mean
- · Auxin reveled to smoke in tripicate or quintuplicate.











## DESIGNING

- Symbols and numbers easy to see.
- All ink is meaningful.
- Space used effectively.
- Shows the data, *not* the design.
- Avoid advertisements (no branding!).



